期刊文献+

整合中文维基语义的网络论坛话题追踪方法研究 被引量:4

Research on Topic Tracking Method for Web Forums by Integrating Chinese Wikipedia Semantics
下载PDF
导出
摘要 研究中文维基语义图上的网络论坛话题追踪,对于提高舆情分析系统获取情报的效率及信息处理质量有很大价值。以涉军主题帖子为背景,借鉴维基百科语义相关度与词语共现关系,构建反映词语间静态与动态关联的文本概念图,改进PR算法的关键词挖掘方法,利用维基知识解决论坛文本中的语义特征稀疏问题,减少噪音以提高论坛文本语义相关度计算的准确性。最后实验证明该方法的优越性。 It is very important for improving efficiency and quality of the public opinion analysis system to study topic tracking on Chinese Wikipedia semantic. Based on topics related to military, Wikipedia semantic correlation with word co- occurrence relations has been introduced. Text concept Graph to reflect the words between the static and dynamic has been constructed. Two ways to improve the PR algorithm of mining the keywords are suplied. The problem of the thin semantic features method using the wiki knowledge to is solved. It is well to reduce the noise in order to improve the accuracy. It is proved of the superiority of the method for the experiment.
出处 《情报学报》 CSSCI 北大核心 2013年第1期22-27,共6页 Journal of the China Society for Scientific and Technical Information
基金 本研究得到全军军事学研究生课题(2011JY002-366)的支持.
关键词 维基百科 网络舆情分析 话题追踪 涉军论坛 wikipedia,network public opinion analysis ,topic tracking,military forum
  • 相关文献

参考文献9

二级参考文献30

  • 1贾自艳,何清,张海俊,李嘉佑,史忠植.一种基于动态进化模型的事件探测和追踪算法[J].计算机研究与发展,2004,41(7):1273-1280. 被引量:58
  • 2金珠,林鸿飞,赵晶.基于HowNet的话题跟踪及倾向性分类研究[J].情报学报,2005,24(5):555-561. 被引量:21
  • 3王会珍,朱靖波,季铎,叶娜,张斌.基于反馈学习自适应的中文话题追踪[J].中文信息学报,2006,20(3):92-98. 被引量:17
  • 4宋丹,王卫东,陈英.基于改进向量空间模型的话题识别与跟踪[J].计算机技术与发展,2006,16(9):62-64. 被引量:23
  • 5林鸿飞,宋丹,杨志豪.基于语义框架的话题追踪方法[C]//中国中文信息学会二十五周年学术会议.北京:清华大学出版社,2006:383-384.
  • 6The 2004 Topic Detection and Tracking(TDT2004)[S]. Task Definition and Evaluation Plan, Version 1.0, 2004.
  • 7Carbonell J, Yang Y, Lafferty J,et al. CMU Report on TDT-2: Segmentation, Detection and Tracking[ C] //Proceedings of the DARPA Broadcast News Transcription and Understanding Workshop. San Francisco: Morgan Kauffman, 1999: 117-120.
  • 8Schapire R E. BoosTexter: A Boosting-Based System for Text Categorization[J]. Machine Learning, 1999, 39(2/ 3): 135- 168.
  • 9Jianping Zeng, Shiyong Zhang. Incorporating Topic Transition in Topic Detection and Tracking Algorithms[J]. Expert Systems with Applications, 2009, 36(1) : 227 - 232.
  • 10Juha Makkonen, Helena Ahonen Myka, Marko Salmenkivi. Simple Semantics in Topic Detection and Tracking[J]. Information Retrieval, 2004,7 (3/4) : 347 - 368.

共引文献40

同被引文献60

  • 1戴媛,程学旗.面向网络舆情分析的实用关键技术概述[J].信息网络安全,2008(6):62-65. 被引量:21
  • 2万源.基于语义统计分析的网络舆情挖掘技术研究[D].武汉:武汉理工大学理学院,2012:56-75.
  • 3付艳,周明全,王学松,等.面向互联网新闻的在线事件检测[J].软件学报,2010,21(增):363-372.
  • 4王灵芝.高校学生网络舆情分析及引导机制研究[D].长沙:中南大学政治学院,2010:30.
  • 5Poon H,Domingos P.Unsupervised semantic parsing[C]∥Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing.Association for Computational Linguistics,2009:1-10.
  • 6Roberts C W,Zuell C,Landmann J,et al.Modality analysis:a semantic grammar for imputations of intentionnality in texts[J].Quality & Quantity,2010,44(2):239-257.
  • 7Rao G,Agarwal C,Chaudhry S,et al.Natural language queryProcessing using semantic Grammar[J].International Journal on Computer Science and Engineering,2010,2(2):219-223.
  • 8Vlassis N.A concise introduction to multiagent systems and distributed artificial intelligence[J].Synthesis Lectures on Artificial Intelligence and Machine Learning,2007,1(1):1-71.
  • 9Klein D.The unsupervised learning of natural language struc-ture[D].Stanford University,2005.
  • 10Hopcroft J E.Introduction to Automata Theory,Languages,and Computation,3/E[M].Pearson Education India,2008.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部