期刊文献+

基于小波和支持向量机的光纤微振动传感器模式识别 被引量:9

Pattern recognition of fiber-optic micro vibration sensor based on wavelet and SVM
下载PDF
导出
摘要 为实现对双M-Z型光纤传感器的振动信号进行识别,提出一种基于小波能熵和支持向量机(SVM)的光纤传感信号模式识别方法。该方法对小波分解得到的各频段系数求解其能量信息熵,归一化后得到特征向量。其作为SVM的输入,通过选用合适的核函数和多类的分类方法,对SVM多类分类器进行建模。在多种振动信号的条件下,用测试样本对SVM分类器模型进行测试,测试结果表明:该方法对双M-Z型光纤微振动传感器的振动信号的分类达到了较高的识别率。 In order to recognize vibration signal from dual M-Z fiber-optic sensor,a mode recognition method based on wavelet energy entropy and support vector machine(SVM) is introduced.This method is applied to solve energy information entropy with each band coefficient obtained by wavelet decomposition,then normalized into feature vector,which is used as input for SVM multiclass classifier modeling,with proper kernel function and classification method.SVM model is tested by test sample in condition of multivibration signals,and test result indicates that high recognition accuracy can be achieved by this method.
出处 《传感器与微系统》 CSCD 北大核心 2013年第2期43-45,49,共4页 Transducer and Microsystem Technologies
关键词 光纤微振动传感器 模式识别 小波能熵 支持向量机 fiber-optic micro vibration sensor mode recognition wavelet energy entropy(WEE) SVM
  • 相关文献

参考文献7

  • 1Sun Qizhen,Liu Deming,Wang Jianmin. A novel distributed sensor using long-distance Mach-Zehnder interferometer[J].Optics Communications,2008.1538-1544.
  • 2程正兴.小波分析算法与应用[M]西安:西安交通大学出版社,1998.
  • 3张贤达;保铮.非平稳信号分析与处理[M]北京:国防工业出版社,2001.
  • 4Avic E,Akpolat Z H. Speech recognition using a wavelet packet adaptive network based fuzzy inference system[J].Export Systems with Applications,2006,(03):495-503.doi:10.1016/j.eswa.2005.09.058.
  • 5李国正.支持向量机导论[M]北京:电子工业出版社,2004.
  • 6Chang Chih-chung,Lin Chih-jen. LIBSVM-A library for support vector machine[EB/OL].http://www.csie.ntu.edu.tw/ ~ cjlin/libsvm,2012.
  • 7Hsu Chih-wei,Chang Chih-chung,Lin Chih-jen. A practical guide to support vector classificaiton[EB/OL].http://www.csie.ntu.edu.tw/ ~ cjlin/libsvm/.html,2008.

同被引文献85

引证文献9

二级引证文献128

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部