摘要
声纹识别是生物特征识别领域的一个重要分支。它采用语言数据自动地鉴定测试者身份。本文研究复杂背景下的声纹识别系统的设计与实现,首先,利用正交小波滤波器组来对信号进行预滤波,对语言信号的每个频率段进行细粒度去噪,提取出各频段小波系数,重构出语音信号;其次,在特征提取阶段,利用倒谱法计算出基音周期参数,通过Mel滤波器组将小波系数转换成Mel倒谱系数(MFCC),将得出的两种参数组成一个特征矢量作为声纹特征;最后声纹识别阶段,每一个说话人都由一个GMM表示,计算出特征矢量序列的每个似然函数,找到其中最大的说话人模型,即判定为说话人。
出处
《电子世界》
2013年第3期97-99,共3页
Electronics World