期刊文献+

应用神经网络进行卫星遥感图像的热异常信息提取 被引量:1

Detecting the Coal Fires on Landsat TM Thermal IR Images with Neural Network
下载PDF
导出
摘要 概要介绍了影响地表温度的几个主要因素 ,在此基础上提出了对 TM卫星图像进行热异常信息提取的基本方法和步骤 ,其中又着重分析了神经网络在建立热异常信息提取的数学模型方面的应用。针对神经网络的该种应用特点 ,应用了样本集批处理和加入衰减的动量因子两种 BP神经网络的改进办法 ,使神经网络对于训练样本集的学习能力得到了明显提高。把应用神经网络进行热异常信息提取后的 TM卫星图像与基于航空遥感获得的图像进行比较表明 ,这里提出的热异常信息提取方法可以应用于煤层自燃的探测 ,而且在成本和检测周期等方面均有很大的优势。 Coal fires are widely prevalent in the north of China. They have already caused huge losses in resources and pose a serious environmental problem. To monitor and extinguish coal fires, the first step is to detect their location and scale. Because of the huge amounts of heat energy released by coal fires, the resulting thermal anomalies can be detected by using thermal infrared remote sensing technology. On nocturnal aerial images it is relatively easy to discern coal fires, because the effect of solar radiation is insignificant. However, nocturnal aerial images are not available as often as Landsat TM daytime images for such a large area as the north of China. In this paper, we first give a briefing of the basic principle in reducing solar radiation on TM thermal IR image. Then, neural network is used to set up a mathematical model of ground temperature. In view of the special character of artificial neural network used in this application, we offer the batch learning approach and adjust active momental factor. The result achieved by reducing solar radiation on TM thermal IR image is as good as airborne nighttime thermal infrared image for detecting coal fires. So this method is very practical and greatly economizes the cost of aerial remote sensing image.
出处 《遥感技术与应用》 CSCD 2000年第3期146-150,共5页 Remote Sensing Technology and Application
关键词 卫星遥感 图像处理 热异常信息提取 神经网络 Remote sensing image processing, Thermal anomaly extraction, Neural network
  • 相关文献

参考文献6

  • 1BartolucciLA.AtmosphericEffectsonLandsatTMThermalIRData[J].IEEETransactiononGeo-scienceandRemoteSensing,1988,26:171~175.
  • 2NormanJM,DivakarlaM,GoelNS.AlgorithmsforExtractionfromRemoteThermalIRObservationoftheEarth'sSurface[J].RemoteSensingofEnvironment,1994,12:331~348.
  • 3MannsteinH.LandSurfaceEnergyBudget[J].NATOASISeries,1994,124:367~391.
  • 4DaveJV.EffectofTerrainOrientationandSolarPositiononSatellite-levelLuminanceObservation[J].RemoteSensingofEnvironment,1982,12:331~248.
  • 5杨凯.遥感图像处理原理与方法[M].北京:测绘出版社,1988..
  • 6RumelhartDE,McclellandJL,ThePDPResearchGroup.ParallelDistributedProcessing:ExplorationinMicrostructureofCognition[Z].vol.1:Foundations(Cambridge,MA:TheMITPRESS),1986.

共引文献3

同被引文献25

  • 1高峰,王介民,孙成权,马耀明.遥感技术在陆面过程研究中的应用进展[J].地球科学进展,2001,16(3):359-366. 被引量:8
  • 2马耀明,王介民,MassimoMenenti,WimBastiaanssen.HEIFE非均匀陆面上区域能量平衡研究[J].气候与环境研究,1997,0(3):96-104. 被引量:11
  • 3文军,王介民.一种由卫星遥感资料获得的修正的土壤调整植被指数[J].气候与环境研究,1997,0(3):105-112. 被引量:23
  • 4徐兴奎,刘素红.中国地表月平均反照率的遥感反演[J].气象学报,2002,60(2):215-220. 被引量:26
  • 5Sobrino J A,Juan C Jiménez-Muoz,Leonardo Paolini.Land surface temperature retrieval from LANDSAT TM5[J].Remote Sensing of Environment,2004,90(4):434-440.
  • 6Vermote E F,D Tanre,J L Deuze et al.Second simulation of the satellite signal in the solar spectrum,6S:An overview[J].IEEE Trans Geosc Remote Sens,1997,35(3):675-686.
  • 7Qi J,A Chehbouni,A R Huete et al.A modified soil adjusted vegetation index[J].Remote Sensing of Environment,1994,48:119-126.
  • 8Carlson T N,D A Ripley.On the relation between NDVI,fractional vegetation cover,and leaf area index[J].Remote Sensing of Environment,1997,62(3):241-252.
  • 9Stella W T,R r M Hoffer.Responses of spectral of spectral indices to variation in vegetation cover and soil background[J].Photogrammetric Engineering & Remote Sensing,1998,64(9):915-923.
  • 10文军.[D].中国科学院兰州高原大气物理研究所,1999.55-59.

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部