期刊文献+

基于EIS的杠杆随机波动率模型的极大似然估计 被引量:8

EIS-based maximum likelihood estimation of stochastic volatility model with leverage effect
下载PDF
导出
摘要 杠杆随机波动率(SV-L)模型在金融计量学文献中已经引起了广泛的关注,然而,它的参数估计一直是一个难点.本文基于有效重要性抽样(EIS)技巧,给出了SV-L模型的极大似然(ML)估计方法.为了检验提出的EIS-ML方法的精确性以及小样本性质,构建了蒙特卡罗(MC)模拟实验.结果表明,EIS-ML方法是非常准确和有效的.最后,将EIS-ML方法应用于实际数据,选取上证和深证综合指数的日对数收益率数据为研究样本,利用SV-L模型对中国股市进行了实证分析.结果表明,中国股市具有很强的波动持续性,并且存在显著的杠杆效应. The stochastic volatility model with a leverage effect (SV-L) has received a great deal of attention in the financial econometrics literature. However, estimation of the SV-L model poses difficulties. In this pa- per, we develop a method for maximum likelihood (ML) estimation of the SV-L model based on the efficient importance sampling (EIS) technique. Monte Carlo (MC) simulations are presented to examine the accuracy and small sample properties of our proposed method. The experimental results show that the EIS-ML method performs very well. Finally, the EIS-ML method is illustrated with real data. We apply the EIS-ML method of SV-L model to the daily log returns of SSE and SZSE Component Index. Empirical results show that a high persistence of volatility and a significant leverage effect exist in China stock market.
出处 《管理科学学报》 CSSCI 北大核心 2013年第1期74-86,共13页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(71101001 71201013) 国家杰出青年科学基金资助项目(70825006) 教育部"长江学者和创新团队发展计划"资助项目(IRT0916) 国家自然科学基金创新研究群体科学基金资助项目(71221001)
关键词 随机波动率 杠杆效应 有效重要性抽样 极大似然 stochastic volatility leverage effect efficient importance sampling maximum likelihood
  • 相关文献

参考文献27

  • 1Kim S,Shephard N,Chib S. Stochastic volatility:Likelihood inference and comparison with ARCH models[J].Review of Economic Studies,1998.361-393.
  • 2Black F. Studies of stock price volatility changes[A].American Statistical Association,1976.177-181.
  • 3Christie A A. The stochastic behavior of common stock variances[J].Journal of Financial Economics,1982.407-432.
  • 4Melino A,Turnbull S M. Pricing foreign currency options with stochastic volatility[J].Journal of Econometrics,1990.239-265.
  • 5Harvey A C,Ruiz E,Shephard N. Multivariate stochastic variance models[J].Review of Economic Studies,1994.247-264.
  • 6Gallant A R,Tauchen G. Estimation of continuous-time models for stock returns and interest rates[J].Macroeconomic Dynamics,1997.135-168.
  • 7Gallant A R,Hsieh D,Tauchen G. Estimation of stochastic volatility models with diagnostics[J].Journal of Econometrics,1997,(01):159-192.
  • 8Jacquier E,Polson N G,Rossi P E. Bayesian analysis of stochastic volatility models[J].Journal of Business and Economy Statistics,1994.371-389.
  • 9Jacquier E,Polson N G,Rossi P E. Bayesian analysis of stochastic volatility models with fat-tails and correlated errors[J].Journal of Econometrics,2004.185-212.
  • 10Broto C,Ruiz E. Estimation methods for stochastic volatility models:A survey[J].Journal of Economic Surveys,2004,(05):613-649.

二级参考文献63

  • 1刘凤芹,吴喜之.基于SV模型的深圳股市波动的预测[J].山西财经大学学报,2004,26(4):96-99. 被引量:10
  • 2张维,张小涛,熊熊.上海股票市场波动不对称性研究—GJR-与VS-GARCH模型的比较[J].数理统计与管理,2005,24(6):96-102. 被引量:18
  • 3[1]Black F. Studies of stock market volatility changes[A]. Proceedings of the American Statistical Association, Business and Economic Statistics Section[C]. 1976:177~181.
  • 4[2]Harvey A C,Shephard N. The estimation of an asymmetric stochastic volatility model for asset returns[J]. Journal of Business and Economic Statistics,1996,14:429~434.
  • 5[3]Meyer R,Jun Yu. BUGS for a Bayesian analysis of stochastic volatility models[J]. Econometrics Journal,2000,3:198~215.
  • 6[4]Gilks W R,Roberts G O. Strategies for improving MCMC[Z]. Markov Chain Monte Carlo in Practice,1996:89~114.
  • 7[5]Metropolis N,et al. Equations of state calculations by fast computing machine[J]. Journal of Chemical Physics,1953,21:1087~1091.
  • 8[6]Spiegelhalter D J, Thomas A, Best N G, Gilks W R. BUGS 0.5, Bayesian Inference Using Gibbs Sampling. Manual(Version ii)[Z]. Cambridge:MRC Biostatistics Unit,1996.
  • 9[7]Gilks W R,Wild P. Adaptive rejection sampling for Gibbs sampling[J]. Applied Statistics,1992,41:337~348.
  • 10[8]Kim S,Shephard N,Chib S. Stochastic volatility: likelihood inference and comparison with ARCH models[J]. Review of Economic Studies,1998,65:361~393.

共引文献63

同被引文献61

  • 1王春峰,蒋祥林,吴晓霖.随机波动性模型的比较分析[J].系统工程学报,2005,20(2):216-219. 被引量:16
  • 2吴启权,王春峰,房振明,李晗虹.基于SV模型时变参数的中国股市政策效应研究[J].北京理工大学学报(社会科学版),2006,8(3):41-45. 被引量:4
  • 3何兴强,李涛.不同市场态势下股票市场的非对称反应——基于中国上证股市的实证分析[J].金融研究,2007(08A):131-140. 被引量:49
  • 4吴毅芳,彭丹.我国股票市场价格波动的非对称性及其国际比较[J].中南大学学报(社会科学版),2007,13(5):568-572. 被引量:4
  • 5Black F. Studies of Stock Market Volatility Changes [ C ]. Proceedings of the American Statistical Association, 1976.
  • 6Campbell J. Y., Hentschel L. No News Is Good News : An Asymmetric Model of Changing Volatility in Stock Returns [ J ]. Journal of Financial Economics, 1992,31 ( 3 ) : 281-318.
  • 7Kanniainen J., Piche R. Stock Price Dynamics and Option Valuations under Volatility Feedback Effect [ J ]. Physica A: Statistical Mechanics and its Applications, 2013,392 (4) :722-740.
  • 8Inkaya A., Okur Y. Y. Analysis of Volatility Feedback and Leverage Effects on the ISE30 Index Using High Frequency DataE J]. Journal of Computational and Applied Mathematics, 2014,259(15) :377-384.
  • 9Bandi F. M., Reno R. Time-varying Leverage Effects [ J ]. Journal of Econometrics, 2012,169 ( 1 ) : 94-113.
  • 10Long L., Tsui A. K., Zhang Z. Conditional Heteroscedasticity with Leverage Effect in Stock Returns : Evidence from the Chinese Stock Market [ J]. Economic Modelling, 2014,37 : 89-102.

引证文献8

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部