摘要
以耐高温滤料过滤效率的试验数据为基础数据,分别采用LS-SVM、RBF神经网络和BP神经网络3种方法,以空气温度、过滤风速、发尘浓度作为输入,过滤效率作为输出训练算法,预测不同测试条件下滤料的过滤效率,并对3种算法的预测结果进行了对比分析.结果表明,采用LS-SVM无论从预测精度还是运行时间上,预测效果都最为理想;LS-SVM的过滤效率预测模型与RBF、BP神经网络相比,平均绝对百分比误差最小,程序运行时间最短.
Based on the filtration efficiency experimental data of the high-temperature resistant filter material ,the filtration efficiency was forecasted in different test conditions using the method of IS-SVM, RBF neural network and BP neural network respectively. The input includes temperature ,filtration velocity and dust concentration. The forecast results of the three-intelligent arithmetic were contrasted and analyzed. It indicated that the LS-SVM arithmetic was the best compared with the RBF and BP neural network in precision and running time, because the LS- SVM arithmetic was the most time-saving method with the least mean absolute percentage error.
出处
《应用基础与工程科学学报》
EI
CSCD
北大核心
2013年第1期90-96,共7页
Journal of Basic Science and Engineering
基金
中国建筑科学研究院应用基金"空气滤料性能试验方法的研究"
关键词
滤料
过滤效率
数值预测
最小二乘向量机
filter material
filtration efficiency
vector machine numerical forecast
least square-support