期刊文献+

滤料过滤效率的数值预测研究

Filtration Efficiency Numerical Forecast of Filter Material
下载PDF
导出
摘要 以耐高温滤料过滤效率的试验数据为基础数据,分别采用LS-SVM、RBF神经网络和BP神经网络3种方法,以空气温度、过滤风速、发尘浓度作为输入,过滤效率作为输出训练算法,预测不同测试条件下滤料的过滤效率,并对3种算法的预测结果进行了对比分析.结果表明,采用LS-SVM无论从预测精度还是运行时间上,预测效果都最为理想;LS-SVM的过滤效率预测模型与RBF、BP神经网络相比,平均绝对百分比误差最小,程序运行时间最短. Based on the filtration efficiency experimental data of the high-temperature resistant filter material ,the filtration efficiency was forecasted in different test conditions using the method of IS-SVM, RBF neural network and BP neural network respectively. The input includes temperature ,filtration velocity and dust concentration. The forecast results of the three-intelligent arithmetic were contrasted and analyzed. It indicated that the LS-SVM arithmetic was the best compared with the RBF and BP neural network in precision and running time, because the LS- SVM arithmetic was the most time-saving method with the least mean absolute percentage error.
出处 《应用基础与工程科学学报》 EI CSCD 北大核心 2013年第1期90-96,共7页 Journal of Basic Science and Engineering
基金 中国建筑科学研究院应用基金"空气滤料性能试验方法的研究"
关键词 滤料 过滤效率 数值预测 最小二乘向量机 filter material filtration efficiency vector machine numerical forecast least square-support
  • 相关文献

参考文献7

二级参考文献53

共引文献119

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部