期刊文献+

基于径向基神经网络回归预测的船舶轴频电场实时检测方法 被引量:3

Real-time Detection of Shaft-rate Electric Field of Ships Based on RBF Neural Network Regressive Prediction
下载PDF
导出
摘要 针对交变电磁信号在海洋环境中衰减较快的特点,在分析船舶轴频电场以及海洋环境电场噪声与测量电路自噪声的基础上,提出了一种能够在低信噪比下检测船舶轴频电场的方法.对信号进行小波分解并在轴频段进行重构,以噪声数据作为训练集训练RBF神经网络建立预测模型,以预测的误差作为检验统计量,达到提高信噪比的目的.再对该统计量做滑动功率谱检测,与得到的浮动阈值做比较来判断目标是否存在.将该方法用于实测船舶轴频电场的检测,取得了较好的效果,与其它目标检测算法比较,该方法在计算时间和检测能力方面具有明显优势. Electric field signal attenuats quickly in marine environment and is hard to be detected. Through analysing shaft-rate (SR)electric field and noise of environmental electric field and measurement circuit,an effect way for detecting the SR electric field signal under a low signal- noise ratio(SNR). Based on the noise, a RBF neural network predictive model was set up, the prediction error was made to be testing statistic and it was detected using slide detection method, the detecting result was compared with the floating threshold so we could judge whether there was a target. The simulation results showed that this method could detect the target effectively. Compared with other detecting method, it costed less time and was better at detection.
出处 《应用基础与工程科学学报》 EI CSCD 北大核心 2013年第1期167-173,共7页 Journal of Basic Science and Engineering
基金 国家自然科学基金 船舶水下极低频电磁信号特征与换算方法研究(51109215)
关键词 船舶电场 轴频电场 信号检测 小波分解 RBF神经网络 electric field of ships SR electric field target detection wavelet decomposition RBF neural network
  • 相关文献

参考文献11

  • 1林春生;龚沈光.船舶物理场[M]北京:兵器工业出版社,2007.
  • 2卢新城,龚沈光,孙明,刘胜道.轴转动调制腐蚀电流产生的极低频电场的测定[J].兵工学报,2004,25(5):544-546. 被引量:26
  • 3Jeffery I,Brooking B. A survey of new electromagnetic stealth technologies[M].WR Davis Enginerring Ltd,1998.
  • 4Hoitham P,Jeffre I,Brooking B. Electromagnetic signature modeling and reduction[A].Amsterdam,1999.97-100.
  • 5Dymarkowski K,Uczciwek J. Ships detection based on measurement of electric field in disturbance existing region[A].London,2000.1-6.
  • 6吴正国;尹为民;侯新国.高等数字信号处理[M]北京:机械工业出版社,2009.
  • 7Zhang B L,Coggins R. Multiresolution forecasting for future trading using wavelet decomposition[J].Neural Networks,2001,(04):765-775.
  • 8史峰;王小川;郁磊.MATLA神经网络30个案例分析[M]北京:北京航空航天大学出版社,2010.
  • 9包中华,龚沈光,李俊,胡鹏.一种基于负熵的舰船轴频电场信号检测方法[J].仪器仪表学报,2010,31(10):2210-2215. 被引量:14
  • 10包中华,龚沈光,李松.基于自适应累量算法的舰船轴频电场信号检测方法[J].海军工程大学学报,2009,21(4):13-16. 被引量:13

二级参考文献23

共引文献48

同被引文献39

  • 1曹凤才,张志栋,窦银科.冰层厚度传感器在冰层厚度检测系统中的应用研究[J].应用基础与工程科学学报,2009,17(S1):187-193. 被引量:3
  • 2刘国庆,邹广德,徐芳芳,杨忠玉.黄河冰层厚度测量仪的研制[J].山东理工大学学报(自然科学版),2005,19(5):23-26. 被引量:2
  • 3庞敏,朱伟兴.基于RBF网络的数据融合在废气数据处理中的应用[J].传感器与微系统,2007,26(4):87-89. 被引量:4
  • 4I-Iaas C. Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas, Antarctica[ J]. Cold Regions Science and Technology, 1998,27 (1) :1-16.
  • 5Bitz C M, Holland M M, Weaver A J, et al. Simulating the ice-thickness distribution in a coupled climate model [ J ]. Journal of Geophysical Research : Oceans( 1978-2012 ) ,2001,106 (C2) :2441-2463.
  • 6Karagiannis V ,Manassis C, Bargiotas D. Position sensors based on the delay line principle[ J]. Sensors and Actuators A : Physical, 2003,106 ( 1 ) : 183-186.
  • 7Richter-Menge J A, Perovich D K, Elder B C, et al. Ice mass-balance buoys:a tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover[ J]. Annals of Glaciology,2006,44( 1 ) :205-210.
  • 8Shi W,Wang B,Li X. A measurement method of ice layer thickness based on resistance-capacitance circuit for closed loop external melt ice storage tank [ J]. Applied thermal engineering,2005,25 (11 ) :1697-1707.
  • 9John J H. Exploitation of a Ship’s Magnetic Field Signatures(Synthesis Lectures on Computational Electromagnetics) [M].New York: Morgan and Claypool Publishers, 2006: 23-35.
  • 10Rodrigo F J, Marfa-Dolores B, and Sdnchez A. Underwaterthreats detection based on electric field influences[C].Undersea Defence Technology Conference Europe, Hamburg,Germany, 2010: 1-6.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部