期刊文献+

Mg_(1-x)Nd_xNi_(0.5)(x=0,0.05,0.10,0.15,0.20)贮氢合金的电化学与动力学性能研究

Electrochemical and Dynamic Properties of Mg_(1-x)Nd_xNi_(0.5)(x=0,0.05,0.1,0.15,0.2) Hydrogen Storage Alloys
原文传递
导出
摘要 研究了Mg1-xNdxNi0.5(x=0,0.05,0.1,0.15,0.2)贮氢合金的电化学与动力学性能。电化学测试表明:合金均在1~2次循环后达到最大放电容量,具有良好的活化性能。Nd替代Mg可以改善铸态合金的循环稳定性,并显著提高合金的放电容量,经XRD测试表明,这可能是由于添加Nd后合金由单相结构转变为多相结构,相界面增多的原因。但过量的Nd会导致抗腐蚀性减弱从而降低电化学容量保持率;动力学测试表明:随着Nd含量的增加,合金的高倍率放电(HRD)性能先增大后减小,这与交流阻抗测试和氢扩散系数的结果吻合良好,说明适量Nd替代明显提高了合金的高倍率放电能力,有效改善了Mg2Ni型合金的贮氢动力学性能。当x=0.15时合金不仅具有较高的放电容量且显示了良好的动力学性能。 The electrochemical and dynamic properties of Mg1-xNdxNi0.5(x=0,0.05,0.1,0.15,0.2) hydrogen storage alloy were investigated.The electrochemical tests showed that the alloy could up to the maximum discharge capacity after 1~2 crystals,and it had good activation performance.The substitution of Nd for Mg improved the cycle stability of the as-cast alloys,and significantly enhanced its discharge capacity,for the alloy changed from a single-phase into the multiphase structure by the substitution of Nd,but excessive Nd would weaken the corrosion resistance of alloy and reduced capacity retention rate.The dynamic tests indicated that the high rate discharge performance of the alloy gradually increased and then decreased with the increasing volume of Nd substitution,and the HRD presented a good match to electrochemical impedance spectrum measurement and the hydrogen diffusion coefficient,and showing that Nd substitution clearly improved the high rate discharge capacity and effectively improved the hydrogen dynamics properties of alloy.When x=0.15,the alloy not only had higher discharge capacity but also showed good dynamic properties.
出处 《中国稀土学报》 CAS CSCD 北大核心 2013年第1期71-77,共7页 Journal of the Chinese Society of Rare Earths
基金 国家自然科学基金(51161015)资助
关键词 Mg2Ni合金 ND 电化学性能 动力学性能 hydrogen storage alloy Nd electrochemical properties dynamic properties
  • 相关文献

参考文献19

  • 1Jurczyk M,Smardz L,Okonska I,Jankowska E Nowak M Smardz K. Nanoscale Mg-based materials for hydrogen storage[J].International Journal of Hydrogen Energy,2008,(01):374.
  • 2Jain I P,Lal C,Jaln A. Hydrogen storage in Mg:a most promising material[J].International Journal of Hydrogen Energy,2010,(10):5133.
  • 3Jurczyk M,Smardz L,Szajek A. Nanocrystalline materials for Ni-MH batteries[J].Materials Science and Engineering,2004,(1/2):67.
  • 4Jurczyk M,Okonska I,Iwasieczko W,Jankowska E Drulis H. Thermodynamic and electrochemical properties of nanocrystalline Mg2Cu-type hydrogen storage materials[J].Journal of Alloys and Compounds,2007,(1/2):316.
  • 5Yuan H T,Li Q D,Song H N,Wang Y J Liu J W. Electrochemical characteristics of Mg2Ni-type alloys prepared by mechanical alloying[J].Journal of Alloys and Compounds,2003,(1/2):322.
  • 6王平,张胤,李霞,张羊换.球磨La_2Mg_(17)+x%Ni(x=50,100,150,200)复合贮氢合金的电化学性能研究[J].中国稀土学报,2011,29(6):743-748. 被引量:3
  • 7Delcheva P,Solsonaa P,Drencher B,Drencher N Spassov T Bar6 M D. Direct hydriding of Mg87Al7Ni3Mn3 by reactive mechanical milling in hydrogen atmosphere and influence of particle size on the dehydriding reaction[J].Journal of Alloys and Compounds,2005,(1/2):98.
  • 8Liu F J,Androck S,Suda S. Activation characteristics of chemically treated LaNi4.7 Al0 3[J].Journal of Alloys and Compounds,1992,(1/2):57.
  • 9Davidson D J,Sai Raman S S,Srivastava O N. Investigation on the synthesis characterization and hydrogenation behaviour of new Mg-based composite material Mg-xwt% MmNi4.6Fe0 4 prepared through mechanical alloying[J].Journal of Alloys and Compounds,1999,(1/2):194.
  • 10Bobet J L,Grigorova E,Khrussanova M,Khristov M Radev D Peshev P. Hydrogen sorption properties of the nanocomposites Mg-Mg2Ni1-x Fex[J].Journal of Alloys and Compounds,2002,(1/2):280.

二级参考文献45

  • 1Woo J H, Lee K S. J Electrochem Soc[J], 1999, 146 (3): 819.
  • 2Liu F J, Suda S. J Alloy Compd[J], 1995, 231:742.
  • 3Liu Y N, Zhang X J. J Alloy Compd[J], 1998, 276:231.
  • 4Nohara S, Fujita N, Zhang S G et al. J Alloy Compd[J], 1998, 267:76.
  • 5Kimura H, Masumoto T. Scripta Metall[J], 1975, 9:211.
  • 6Huang L J, Liang G Y, Sun Z B et al. J Power Sources[J], 2006, 160:684.
  • 7Yamaura S I, Kim H Y, Kimura H et al. J Alloy Compd[J], 2002, 339:230.
  • 8Teresiak A, Gebert A, Savyak M et al. J Alloy Compd[J],2005,398:156.
  • 9Hammioui M E, Belkbir L, Gerard N Z. Phys Chem[J], 1992, 178:207.
  • 10Goo N H, Woo J H, Lee K S. J Alloy Compd[J], 1999, 288: 286.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部