期刊文献+

基于变量分裂法的稀疏约束并行磁共振图像重建 被引量:1

Sparse Constrained Reconstruction for Parallel Magnetic Resonance Image Based on Variable Splitting Method
下载PDF
导出
摘要 针对并行磁共振成像技术中,数据欠采样造成重建图像存在的混迭伪影和噪声问题,提出一种稀疏约束下并行磁共振的图像重建算法.该算法将一阶差分作为稀疏投影算子,构建在各向异性全变分最小化约束下并行磁共振的图像重建问题.同时,提出基于变量分裂法的求解方法,并在不同实验环境下分析该算法的有效性和鲁棒性.结果表明该算法可显著提高加速因子最大时并行磁共振重建图像的质量. In order to reduce the aliasing artifacts and noise in the reconstructed images due to under-sampling data, a sparse constrained image reconstruction algorithm is proposed for parallel magnetic resonance imaging. In this paper, first-order difference is viewed as the sparse project Operator, and a parallel mag- netic resonance image reconstruction algorithm restrained by anisotropic total variation minimization is re- searched. Meanwhile, a solution based on variable splitting method is proposed, and the effectiveness and robustness of the proposed algorithm are analyzing in some specified experimental environments. The results show that the quality of reconstructed images is evidently improved for parallel magnetic resonance imaging by the proposed method at a maximum acceleration factor.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2013年第1期6-13,共8页 Pattern Recognition and Artificial Intelligence
基金 国家973计划项目(No.2009CB320804) 国家青年科学基金项目(No.30900332 51107130) 浙江省科技厅重大科技专项重点国际科技合作研究项目(No.2010C14010)资助
关键词 并行磁共振成像 敏感性编码 压缩感知 拉格朗日乘子法 变量分裂法 非线性共轭梯度算法 Parallel Magnetic Resonance Imaging,Sensitivity Encoding,Compressed Sensing,Lagrangian Multiplier Method,Variable Splitting Method,Nonlinear Conjugate Gradient Method
  • 相关文献

参考文献22

  • 1Pruessmann K P,Weiger M,Scheidegger M B. SENSE:Sensitivity Encoding for Fast MRI[J].Magnetic Resonance in Medicine,1999,(05):952-962.
  • 2Griswold M A,Jakob P M,Heidemann R M. Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA)[J].Magnetic Resonance in Medicine,2002,(06):1202-1210.doi:10.1002/mrm.10171.
  • 3McKenzie C A,Yeh E N,Ohliger M A. Self-Calibrating Parallel Imaging with Automatic Coil Sensitivity Extraction[J].Magnetic Resonance in Medicine,2002,(03):529-538.doi:10.1002/mrm.10087.
  • 4Hansen P C. Rank-Deficient and Discrete Ill-Posed Problems:Numerical Aspects of Linear Inversion[M].Philadelphia,USA:SIAM,1998.
  • 5Ribes A,Schmitt F. Linear Inverse Problems in Imaging:An Introductory Survey[J].IEEE Signal Processing Magazine,2008,(04):84-99.
  • 6Omer H,Dickinson R. Regularization in Parallel MR Image Reconstruction[J].Concepts in Magnetic Resonance,2011,(02):52-60.
  • 7Lin F H,Wang F N,Ahlfors S P. Parallel MRI Reconstruction Using Variance Partitioning Regularization[J].Magnetic Resonance in Medicine,2007,(04):735-744.doi:10.1002/mrm.21356.
  • 8Raj A,Singh G,Zabih R. Bayesian Parallel Imaging with Edge-Preserving Priors[J].Magnetic Resonance in Medicine,2007,(01):8-21.
  • 9Lustig M,Donoho D L,Pauly J M. Sparse MRI:The Application of Compressed Sensing for Rapid MR imaging[J].Magnetic Resonance in Medicine,2007,(06):1182-1195.doi:10.1002/mrm.21391.
  • 10Liang Dong,Liu Bo,Wang JiunJie. Accelerating SENSE Using Compressed Sensing[J].Magnetic Resonance in Medicine,2009,(06):1574-1584.doi:10.1002/mrm.22161.

同被引文献31

  • 1冯晓源,刘含秋.功能磁共振成像在中国的研究现状[J].中国医学计算机成像杂志,2004,10(5):292-298. 被引量:19
  • 2Shannon CE. Communication in the presence of noise. Proceedings IEEE, 1949, 37: 10-21.
  • 3Cand6s EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. Information Theory, IEEE Transactions, 2006, 52(2): 489-509.
  • 4Donoho D L. Compressed sensing. Information Theory, IEEE Transactions, 2006, 52(4): 1289-1306.
  • 5Baraniuk RG. Compressive sensing [lecture notes]. Signal Processing Magazine IEEE, 2007, 24(4): 118-121.
  • 6Cand6s EJ, Wakin MB. An introduction to compressive sampling. Signal Processing Magazine IEEE, 2008, 25(2): 21-30.
  • 7Kutyniok G. Compressed sensing: theory and applications, arXiv, 2012: 1203, 3815.
  • 8Jung H, Ye JC. Performance evaluation of accelerated functional MRI acquisition using compressed sensing. Biomedical Imaging: from nano to macro, 2009. IEEE, 2009: 702-705.
  • 9Vaswani N. Kalman filtered compressed sensing. Image Processing, 2008. IEEE, 2008: 893-896.
  • 10Vasanawala SS, Alley MT, Hargreaves BA, et al. Improved pediatric MR imaging with compressed sensingl. Radiology, 2010, 256(2): 607-616.

引证文献1

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部