摘要
针对并行磁共振成像技术中,数据欠采样造成重建图像存在的混迭伪影和噪声问题,提出一种稀疏约束下并行磁共振的图像重建算法.该算法将一阶差分作为稀疏投影算子,构建在各向异性全变分最小化约束下并行磁共振的图像重建问题.同时,提出基于变量分裂法的求解方法,并在不同实验环境下分析该算法的有效性和鲁棒性.结果表明该算法可显著提高加速因子最大时并行磁共振重建图像的质量.
In order to reduce the aliasing artifacts and noise in the reconstructed images due to under-sampling data, a sparse constrained image reconstruction algorithm is proposed for parallel magnetic resonance imaging. In this paper, first-order difference is viewed as the sparse project Operator, and a parallel mag- netic resonance image reconstruction algorithm restrained by anisotropic total variation minimization is re- searched. Meanwhile, a solution based on variable splitting method is proposed, and the effectiveness and robustness of the proposed algorithm are analyzing in some specified experimental environments. The results show that the quality of reconstructed images is evidently improved for parallel magnetic resonance imaging by the proposed method at a maximum acceleration factor.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2013年第1期6-13,共8页
Pattern Recognition and Artificial Intelligence
基金
国家973计划项目(No.2009CB320804)
国家青年科学基金项目(No.30900332
51107130)
浙江省科技厅重大科技专项重点国际科技合作研究项目(No.2010C14010)资助
关键词
并行磁共振成像
敏感性编码
压缩感知
拉格朗日乘子法
变量分裂法
非线性共轭梯度算法
Parallel Magnetic Resonance Imaging,Sensitivity Encoding,Compressed Sensing,Lagrangian Multiplier Method,Variable Splitting Method,Nonlinear Conjugate Gradient Method