摘要
为解决振动主动控制技术在实际工程应用中反馈环节的时滞会导致受控系统失稳的问题,以获得最优的控制效果,提出了采用逐步输入荷载项的方法,对精细积分方法进行修正,用以求解含双时滞受控系统的动力学方程。通过数值仿真,计算不同时滞情况下的系统响应,在得到不同反馈增益下含双时滞的动力系统响应峰值分布基础上,分析了时滞变化和反馈增益不同的取值对系统响应的影响。研究结果表明,时滞对受控系统控制效果的影响程度随反馈增益的增大而增大,当时滞量和反馈控制增益匹配调节适当时,可以使系统保持稳定状态,该结果可为考虑时滞影响的结构振动主动控制算法的合理设计提供依据。
In order to slove the problems of time delays in feedback control may result in the un- stable motion of an active controlled system for vibrations in actual engineering applications and to ob- tain the optimal control effect, by solving a kind of dynamic equation of control system with double time delays with a modified precise integration method based on a step-by-step input load method, the influences of different values of time delays and feedback control gains on stability of active control system were investigated. A numerical example of response peak distribution of dynamic system with two delays under different feedback gains was proved by calculating different system response under variable time delays. The influences of different values of time delays and feedback control gains on distribution of stabile areas of system were investigated and analyzed, which indicates that the influ- ence of time delays becomes more distinct as system feedback gains increase. The system always keeps stable state when the time delay and the feedback gain get matched, which provides evidence to design active structural vibration control algorlthm under the mtluence o! time delays.
出处
《中国机械工程》
EI
CAS
CSCD
北大核心
2013年第3期317-321,共5页
China Mechanical Engineering
基金
国家自然科学基金资助项目(10772141)
关键词
振动主动控制
精细积分方法
时滞
动力响应
active vibration control
precise integration method time delay dynamics response