期刊文献+

直立岛式结构物周围波浪传播的数值模拟 被引量:2

Numerical Simulation of the Wave Propagation Around Vertical Island Structures
下载PDF
导出
摘要 针对计算域中存在直立岛式结构物的复连通区域,基于时间关联型缓坡方程和相应的边界条件,建立了在计算域中存在直立岛式结构物时波浪传播的数值模拟模型。该模型不仅适用于变水深问题,而且适用于模拟线性波浪的时间和空间演化过程。对直立岛式防波堤及直立方柱周围波浪传播变形的数值模拟表明,所建立的模型能够有效地模拟计算域内存在直立岛式结构物的波浪绕射和反射问题。 For the purpose of studying wave propagation in the water area with vertical structures, a numerical wave model in the multiply connected domain is developed based on the mild-slope equation and the corresponding boundary conditions. This model could not only be applied to the case of varying topography, but also be used to simulate the linear wave evolution both in time and space. Tests are made for wave transformation near an island breakwater and wave transformation near a rectangular cylinder, and the results illustrate that the present model could be applied to simulate wave reflection and refraction in water area with vertical island structure.
作者 何国华 陈婕
出处 《浙江水利科技》 2013年第1期11-14,共4页 Zhejiang Hydrotechnics
关键词 缓坡方程 数值模拟 直立结构物 复连通区域 mild-slope equation numerical simulation vertical structure multiply connected domain
  • 相关文献

参考文献4

二级参考文献27

  • 1潘军宁,左其华,王红川.Efficient Numerical Solution of the Modified Mild-Slope Equation[J].China Ocean Engineering,2000,15(2):161-174. 被引量:12
  • 2Hong Guangwen Professor, Research Institute of Coastal and Ocean Engineering, Hohai University, 1 Xikang Road, Nanjing 210024.Mathematical Models for Combined Refraction-Diffraction of Waves on Non-Uniform Current and Depth[J].China Ocean Engineering,1996,11(4):433-454. 被引量:35
  • 3刘卓,曾庆存.自适应网格在大气海洋问题中的初步应用[J].大气科学,1994,18(6):641-648. 被引量:20
  • 4张洪生.近岸水域波浪传播的数学模型[R].上海:华东师范大学,2002..
  • 5洪广文 冯卫兵 夏期颐 等.缓变水深和流场水域波浪折射、绕射数值模拟[A]..第八届全国海岸工程学术讨论会论文集(下)[C].北京:海洋出版社,1997.703-714.
  • 6[1]Berkhoff, J. C. W., 1972. Computation of combined refraction-diffraction. Proc. 13th Coastal Eng. Conf., Vancouver,Canada, ASCE, 1(1973), 471 ~ 490.
  • 7[2]Berkhoff, J. C. W., Booij, N. and Radder, A. C., 1982. Verification of numerical wave propagation models for simple harmonic water waves, Coastal Eng., 6, 255 ~ 279.
  • 8[3]Copeland, G. J. M., 1985. A practical alternative to the mild-slope wave equation, Coastal Eng., 9, 125~ 149.
  • 9[4]Ebersole, B. A., 1985. Refraction-diffraction model for linear water waves, J. Waterway Port Coastal Ocean Eng., ASCE, 111, 939~ 953.
  • 10[5]Ito, Y. and Tanimoto, K., 1972. A method of numerical analysis of wave propagation -application of wave refraction and diffraction, Proc. 13th Conf. Coastal Eng., Vancouver, Canada. ASCE, Ch. 26.

共引文献24

同被引文献19

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部