摘要
引入了一类Hardy-Lorentz空间,借助于其原子空间特征,利用交换子的L^p有界性的结论,得到了Calderon-Zygmund算子与BMO函数生成的交换子和Littlewood-Paley算子与BMO函数生成的交换子是从H_b^(p,q)(R^n)到L^(p,∞)(R^n)有界的.
Some Hardy-Lorentz spaces were introduced.Based on the characteristic of atomic decomposition of such spaces and by means of the L^p boundedness of commutators,the boundedness of the commutators generated by Calderon-Zygmund operators and BMO functions and the commutators generated by Littlewood-Paley operators and BMO functions from Hbp,q(Rn) to Lp,∞(Rn) were obtained.
出处
《兰州大学学报(自然科学版)》
CAS
CSCD
北大核心
2012年第6期119-124,共6页
Journal of Lanzhou University(Natural Sciences)
基金
国家自然科学基金项目(11041004)
山东省自然科学基金项目(ZR2010AM032)