期刊文献+

基于支持向量机无限集成学习方法的遥感图像分类 被引量:4

Remotely sensed imagery classification by SVM-based Infinite Ensemble Learning method
原文传递
导出
摘要 基于支持向量机的无限集成学习方法(SVM-based IEL)是机器学习领域新兴起的一种集成学习方法。本文将SVM-based IEL引入遥感图像的分类领域,并同时将SVM、Bagging、AdaBoost和SVM-based IEL等方法应用于遥感图像分类。实验表明:Bagging方法可以提高遥感图像的分类精度,而AdaBoost却降低了遥感图像的分类精度;同时,与SVM、有限集成的学习方法相比,SVM-based IEL方法具有可以显著地提高遥感图像的分类精度、分类效率的优势。 Support-vector-machines-based Infinite Ensemble Learning method (SVM-based IEL) is one of the ensemble learning methods in the field of machine learning. In this paper, the SVM-based IEL was applied to the classification of remotely sensed imagery besides classic ensemble learning methods such as Bagging, AdaBoost and SVM etc. SVM was taken as the base classifier in Bagging, AdaBoost. The experiments showed that the classic ensemble learning methods have different performances compared to SVM. In detail, the Bagging was capable of enhancing the classification accuracy but the AdaBoost was decreasing the classification accuracy. Furthermore, the experiments suggested that compared to SVM and classic ensemble learning methods, SVM-based IEL has many merits such as increasing both of the classification accuracy and classification efficiency.
出处 《测绘科学》 CSCD 北大核心 2013年第1期47-50,共4页 Science of Surveying and Mapping
关键词 集成学习 装袋集成学习 提升集成学习 支持向量机 ensemble learning Bagging Boosting Support Vector Machines
  • 相关文献

参考文献20

  • 1Hansen L K,Salmon P. Neural network ensembles[J].IEEE Transactions of Pattern Analysis and Machine Learning,1990,(10):993-1001.
  • 2Krogh A,Vedelsby J. Neural networks ensembles,cross validation and active learning[A].Cambridge,ma:the Mit Press,1995.107-115.
  • 3Schapire R E. The strength of weak learn ability[J].Machine Learning,1990,(02):197-227.
  • 4Breiman L. Bagging predictors[J].Machine Learning,1996,(02):123-140.
  • 5Freund Y,Schapire R. Experiments with a new boosting algorithm[A].1996.148-156.
  • 6Vapnik V N. The Nature of Statistical Learning Theory[M].New York:springer-verlag,1995.
  • 7张睿,马建文.支持向量机在遥感数据分类中的应用新进展[J].地球科学进展,2009,24(5):555-562. 被引量:41
  • 8Kim H,Pang S,Je H. Constructing support vector machine ensemble[J].Pattern Recognition,2003,(02).
  • 9Dong Y S,Han K S. A comparison of several ensemble methods for text categorization[A].Los Alamitos,2004.419-422.
  • 10Huang X,Zhang L P. Road centreline extraction from high-resolution imagery based on multi-scale structural features and support vector machines[J].International Journal of Remote Sensing,2009,(08):1977-1987.

二级参考文献58

共引文献181

同被引文献34

引证文献4

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部