期刊文献+

考虑项目依赖不对称性的协同过滤推荐方法 被引量:3

Collaborative filtering recommendation method considering asymmetry of items' dependence level
下载PDF
导出
摘要 为了降低用户-项目评分矩阵稀疏性对实验结果的影响,提出了一种基于项目依赖度不对称性的协同过滤算法。在分析用户-评分矩阵的基础之上,定义了一种基于项目支持度的计算公式,结合传统的相似度计算公式,设计了基于项目依赖度的计算公式,对比实验结果表明,新方法提高了推荐的准确度,降低了稀疏性对实验结果的影响,取得了较好的效果。 To reduce the influence of recommendation result caused by the User-Item rating matrix sparse, a cooperative filter algorithm based on the asymmetric of item dependency is put forward. Firstly, on the basis of analyzing the User-Item rating ma- trix, a project based support for the asymmetry between the calculation formula is designed, and combining with traditional simi- larity formula, the item dependency formula is defined. Finally, the comparative experimental results show that the proposed method achieves a better precision of the recommendation.
作者 于洪 孟令民
出处 《计算机工程与设计》 CSCD 北大核心 2013年第1期298-302,共5页 Computer Engineering and Design
基金 国家自然科学基金项目(61073146) 重庆市自然科学基金项目(CSTC 2009BB2082)
关键词 协同过滤 个性化推荐 不对称性 依赖度 支持度 collaborative filtering personalized recommendation asymmetric dependence level support level
  • 相关文献

参考文献12

二级参考文献80

共引文献596

同被引文献35

  • 1杜小勇,李曼,王珊.本体学习研究综述[J].软件学报,2006,17(9):1837-1847. 被引量:242
  • 2Zenebe A, Norcio A. Representation, similarity measures and ag gregation methods using fuzzy sets for conten>based recommender systems [J]. Fuzzy Sets and Systems, 2009, 160 (1): 76- 94.
  • 3Yolanda Blaneo-Ferndndez, Martin L6pe:Nores, Alberto GiV Solla, et ai. Exploring synergies between content-based filtering and spreading activation techniques in knowledge-based recom- mender systems [J].Information Sciences, 2011, 181 (21): 4823-4846.
  • 4Yolanda Blanco-Ferndndez, Jose J Pazos-Arias, AIberto GiI-SOl- la. Exploiting synergies between semantic reasoning and persc: nalization strategies in intelligent recommender systems: A case study [J]. Journal of Systems and Software, 2008, 81 (12): 2371-2385.
  • 5Salter J, Antonopoulos N. CinemaScrean recommender agent: Combining collaborative and content-based filtering [J].IEEE Intelligent System, 2006, 21 (1): 35-41.
  • 6Katifori A, Vassilakis C, Dix A. Ontologies and the braim Using spreadi:lg activation through ontologies to support personal interac- tion [J]. Cognitive System Research, 2010, 11 (1): 25-41.
  • 7Ue-Pyng Wen, KuewMing Lan, Hsu Shih Shih. A review of Hopfield neural networks for solving mathematical program- ming problems [J]. European Journal of Operational Re- search, 2009, 198 (3): 675-687.
  • 8Gedikli F. Recommender systems and the social Web: Levera- ging tagging data for recommender systems [M]. Wiesbaden: Springer Vieweg, 2013.
  • 9Davoodi E, Kianmehr K, Afsharchi M. A semantic social net- work-based expert recommender system [J]. Applied Intelli- gence, 2013, 39 (1)I 1-13.
  • 10Cai Y, Leung HF, Li Q, et al. Typicality-based collaborative filtering recommendation [J].IEEE Transactions on Know- ledge and Data Engineering, 2014, 26 (3):766-779.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部