摘要
研究了在三值噪声和热噪声扰动下的RLC电路的平均输出幅度增益.利用随机平均法和Shapiro-Loginov公式,得到了平均输出幅度增益的精确表达式.通过计算机模拟,画出了平均输出幅度增益与平坦系数、有噪声和无噪声时,输出信号振幅与输入信号频率之间的关系曲线.从结果来看,系统产生了双值噪声驱动的RLC电路中(文献[11])没有的随机共振现象,甚至还出现了双共振峰.
This paper studies the phenomena of stochastic resonance in an RLC series circuit induced by trichotomous noise and Gaussian white noise. Based on the random average method and Shapiro-Loginov formula, an explicit expression of the average output amplitude gain (AOAG) is obtained. By simulation, we obtain the curves of AOAG and flatness coefficient, the amplitude of the output signal and the frequency of the input signal under both the noisy and noise-free condition. The results show that the AOAG is a non-monotonic function of flatness coefficient, i.e., the system shows the phenomena of stochastic resonance. In addition, the system shows double-resonance phenomenon which is not reported in Ref. [ 11 ].
出处
《宁波大学学报(理工版)》
CAS
2013年第1期104-109,共6页
Journal of Ningbo University:Natural Science and Engineering Edition
基金
国家自然科学基金(10647134)
宁波大学人才工程项目(XR0708020)
关键词
三值噪声
平均输出幅度增益
RLC串联电路
随机共振
trichotomous noise
average output amplitude gain
RLC series circuit
stochastic resonance