期刊文献+

基于证据理论的异类信息统一表示与建模 被引量:7

Unified Method of Describing and Modeling Heterogeneous Information Based on Evidence Theory
下载PDF
导出
摘要 在复杂系统的性能、可靠性评估中,由于信息不完备、实验样本有限、对复杂物理过程的认识不充分等原因,存在多种不确定性。由于不确定性的来源不同,因此在系统建模时不确定性参数存在概率分布、模糊分布、概率包络、区间信息等多种表达方式,难以用统一的方法对系统的性能、可靠性进行量化评估。研究了概率分布、概率包络、模糊分布、专家估计信息、小样本测试数据等不同类型的信息转化为基于证据理论的统一表示的方法,讨论了基于证据理论的异类信息统一表示方法在模型不确定性量化中的应用。实例仿真表明了所提出方法的有效性。 In reliability analysis and assessment of complex system, it is always in the situation that experimental data is limited, or information is not complete, which produces a variety of uncertainties in the system. As sources of uncertainties are different, there are some different forms of uncertainty representations in system modeling, such as probability distribution, fuzzy distribution, probability box, small sample information, and so on. To solve the problem that system performance and reliability are hard to be assessed with heterogeneous information, the method of translating heterogeneous information into evidence body uniformly was studied. Then the application of proposed method in model uncertainty auantitTcation was described. Simulation results show the effectiveness oflaroposed method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第1期6-11,共6页 Journal of System Simulation
基金 十一五国防重点预研项目(426010501) 十二五国防重点预研项目(426010401 426010402)
关键词 系统建模 不确定性 证据理论 不确定性量化 system modeling uncertainty evidence theory uncertainty quantification
  • 相关文献

参考文献20

  • 1Jim W Hall. Uncertainty-based sensitivity indices for imprecise probability distributions[J].Reliability Engineering and System Safety (S0951-8320),2006,(10-11):1443-1451.
  • 2Fulvio Tonon. Using random set theory to propagate epistemic uncertainty through a mechanical system[J].Reliability Engineering and System Safety (S0951-8320),2004,(03):169-181.
  • 3Ha-RokBae,Ramana V.Grandhi,RobertA.Canfield. Anappoximation approach for uncertainty quantification using evidence theory[J].Reliability Engineering and System Safety (S0951-8320),2004,(03):215-225.
  • 4Harish Agarwal,John E.Renaud,Evan L.Preston. Uncertainty quantification using evidence theory in multidisciplinary design optimization[J].Reliability Engineering and System Safety (S0951-8320),2004,(01):281-294.
  • 5J C Heton,J D Johnson,W L Oberkampf. Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty[J].Reliability Engineering and System Safety (S0951-8320),2006,(10-11):1414-1434.
  • 6Philipp Limbourg,Etieunede Rocquigny. Uncertainty analysis using evidence theory-confronting level-1 and level-2 approaches with data availability and computational constraints[J].Reliability Engineering and System Safety (S0951-8320),2010,(03):550-564.
  • 7Oberkampf W L,Helton J C,Sentz K. Mathematical representation of uncertainty[A].USA:AIAA,2001.
  • 8Oberkampf W L,Diegert K V,Alvin K F. Variability,uncertainty,and error in computational simulation[A].USA:AIAA,1998.59-72.
  • 9Oberkampf W L,Deland S M,Rutherford B M. A new methodology for the estimation of total uncertainty in computational simulation[A].USA:AIAA,1999.
  • 10Diego A Alvarez. A Monte Carlo-based method for the estimation of lower and upper probabilities of events using infinite random sets of indexable type[J].Fuzzy Sets and Systems (S0165-0114),2009,(03):384-401.doi:10.1016/j.fss.2008.08.006.

二级参考文献22

  • 1林作铨,牟克典,韩庆.基于未知扰动的冲突证据合成方法[J].软件学报,2004,15(8):1150-1156. 被引量:27
  • 2管延勇,薛佩军,王洪凯.不完备信息系统的可信决策规则提取与E-相对约简[J].系统工程理论与实践,2005,25(12):76-82. 被引量:22
  • 3Shafer G A.mathematical theory of evidence[M].Princeton NJ:Princeton U.P,1976.
  • 4Ronald R Yager.On the dempster Shafer framework and new combination rules[J].Information Sciences (S0020-0255).1987,41:93-137.
  • 5E C Kulasekere.K Premaratne.D A Dewasurendra,et al.Conditioning and updating evidence[J].International Journal of Approximate Reasoning (S0888-613X).2004,36:75-108.
  • 6Jousselme A L,Dominic G,Bosse E.A new distance between two bodies of evidence[J].Information Fusion (S1566-2535).2001,2:91-101.
  • 7Zou Xiangjun,Sun Jian,He Hanwu.Product Modeling Based on Knowledge Fusion in Virtual Environment[J].Journal of ShanghaiUniversity (S1007-6417).2004,8(S):48-52.
  • 8Shyng J Y, Wang F K, Tzeng G H, et al. Rough Set Theory in Analyzing the Attributes of Combination Values for the Insurance Market [J]. Expert Systems with Applications (S0957-4174), 2007, 32(1): 56-64.
  • 9Mollestad T, Skowron A. A Rough Set Framework for Data Mining of Propositional Default rules [C]// Proceedings of the 9th International Symposium on Foundations of Intelligent Systems (ISMIS), 1996. Berlin: Springer-Verlag, 1996: 448-457.
  • 10Thabtah F, Cowling P, Peng Y. A Study of Predictive Accuracy for Four Associative Classifiers [J]. Journal of Digital Information Management (S0972-7272), 2005, 3(3): 209-212.

共引文献13

同被引文献29

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部