期刊文献+

双尺度变异离散粒子群算法求解背包问题 被引量:3

Discrete Particle Swarm Optimization Algorithm Based on Double-scale Mutation for Knapsack Problems
下载PDF
导出
摘要 针对传统离散粒子群算法求解背包问题早熟收敛、精度低等缺点提出一种解决背包问题的双尺度变异离散粒子群算法。利用对当前最优解进行双尺度速度变异,可以实现提高算法局部最优解搜索能力的同时,保持算法的全局搜索能力和逃出局部极值的能力。在算法初期利用粗尺度速度变异可使粒子快速定位到最优解区域,算法后期则通过逐渐减小的细尺度变异可提高算法最优解的精度。粒子位置初始化过程中,把采用贪心策略所得的结果作为一个粒子的初始位置。将改进算法与其他算法比较证明该算法不仅能够有效解决其他算法搜索能力差的问题,同时还提高了最优解的精度和收敛速度。 To deal with the problem of premature convergence and low precision of the traditional discrete particle swarm optimization algorithm for knapsack problems, a discrete particle swarm optimization algorithm based on double-scale velocity mutation for knapsack problems was proposed. The double- scale velocity mutation operator was introduced on the current optimal solution, which could not only improve the ability of local search, but also keep the abilities of global space search and escaping from local optimum. The coarse-scale mutation operators could be utilized to quickly localize the global optimal space at the early evolution. The fine multi-scale mutation operators which gradually reduced could improve the precision of optimal solution at the later evolution. In the course of initialization, the results were used that obtained from greedy strategy as the initial position of a particle. Comparison of the performance of the proposed approach with the other DPSO algorithms was experimented. The experimental results show that the proposed approach can not only effectively solve the problem of lack of local search ability, but also significantly improve the accuracy of the solution and speed up the convergence.
出处 《系统仿真学报》 CAS CSCD 北大核心 2013年第1期12-17,共6页 Journal of System Simulation
基金 国家自然科学基金(61074076) 中国博士后科学基金(20090450119) 中国博士点新教师基金(20092304120017)
关键词 背包问题 离散粒子群 双尺度变异 贪心策略 knapsack problems discrete particle swarm optimization double-scale mutation greedy strategy
  • 相关文献

参考文献14

二级参考文献97

共引文献117

同被引文献29

  • 1马慧民,叶春明,张爽.二进制改进粒子群算法在背包问题中的应用[J].上海理工大学学报,2006,28(1):31-34. 被引量:34
  • 2付绍昌,黄辉先,肖业伟,吴翼,王宸昊.自适应变异粒子群算法在交通控制中的应用[J].系统仿真学报,2007,19(7):1562-1564. 被引量:14
  • 3刘建芹,贺毅朝,顾茜茜.基于离散微粒群算法求解背包问题研究[J].计算机工程与设计,2007,28(13):3189-3191. 被引量:29
  • 4ESKESEN J, OWENS D, SOROKA M, et al.Design and performance of Odyssey IV:a deep ocean hover-capable AUV[J].jge, 2009,617 : 253-3438.
  • 5KULHANDJIAN H, MELODIA T,KOUTSONIKOLAS D. CDMA-based analog network coding through interference cancellation for underwater acoustic sensor networks[C].Proceedings of the Seventh ACM International Conference on Underwater Networks and Systems.ACM, 2012 : 7-16.
  • 6HEIDEMANN J, STOJANOVIC M,ZORZI M.Underwater sensor networks: applications, advances and challenges[J]. Philosophical Transactions of the Royal Society A:Mathe- matical ,Physical and Engineering Sciences, 2012,370(1958) : 158-175.
  • 7FARR N, BOWEN A,WARE J, et al.An integrated, under- water optical/acoustic communications system[C].OCEANS 2010 IEEE-Sydney.IEEE, 2010 : 1-6.
  • 8DUNBABIN M, CORKE P,VASILESCU I, et at.Data muling over underwater wireless sensor networks using an autonomous underwater vehicle[C].Robotics and Automa- tion,2006.ICRA 2006.Proceedings 2006 IEEE International Conference on.IEEE, 2006 : 2091-2098.
  • 9Zhang ~ Shao X, Li E et al. An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem [J]. Computers and Industrial Engineering (S0360-8352), 2009, 56(4): 1309-1318.
  • 10Xia L, Chu J, Geng Z. ANew Multi-Swarms Competitive Particle Swarm Optimization Algorithm [M]. Advances in Information Technology and Industry Applications ($1876-1100). Germany: Springer Berlin Heidelberg, 2012: 133-140.

引证文献3

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部