期刊文献+

改进的低阶轮廓矩特征推导方法 被引量:2

An Improved Derivation Method for Low-Order Contour Moments
下载PDF
导出
摘要 轮廓矩特征能够有效描述目标的形状。与基于区域的矩特征不同,轮廓矩扫描目标周长像素点时,时间和空间复杂度低,但轮廓矩公式的推导过程复杂。提出用参数方程描述轮廓曲线段的方法,基于格林定理仅利用一次二项式定理推导出轮廓矩的一般表达式。以舰船投影图像为例计算了常用低阶轮廓矩,实验表明,与区域矩特征相比运行速度快,且质心误差不超过2%。 Contour moments can effectively describe the objects' shape. Different from global moments, the contour moments scan all the pixels on the perimeter of object with a lower time and space complexity, but the process of derivation is very complicated. We tried to simplify the procedure by describing the contour curve section with parameter equation. Based on the Green theorem, binomial theorem was used only once while calculating the contour moments. Taking the ship projection images as examples, general expressions of contour moments were calculated. The experiments showed that it operated faster than area moments, and the centroid error was less than 2%.
出处 《电光与控制》 北大核心 2013年第1期1-4,共4页 Electronics Optics & Control
基金 国家“八六三”课题创新基金项目资助(2010AAJ133)
关键词 目标识别 矩特征 轮廓 格林定理 object recognition moments feature contour Green theorem
  • 相关文献

参考文献12

  • 1HU M K. Visual pattern recognition by moment invariant[J].IEEE Transactions on Information theory,1962,(02):179-187.
  • 2WISKOTT L,FELLOUS J M,KUIGER N. Face recognition by elastic bunch graph matching[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,(07):775-779.doi:10.1109/34.598235.
  • 3杨杰,Al-Rawi Mohammed,叶晨洲.一种彩色图像的二维纹理识别方法[J].上海交通大学学报,2003,37(11):1747-1750. 被引量:3
  • 4KADYROV A,PETROU M. The trace transform and its application[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,(08):811-828.
  • 5PETROU M,KADYROV A. Affine invariant features from the trace transform[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,(01):30-34.doi:10.1109/TPAMI.2004.1261077.
  • 6刘亦书,杨力华,孙倩.轮廓矩不变量及其在物体形状识别中的应用[J].中国图象图形学报(A辑),2004,9(3):308-313. 被引量:35
  • 7JIANG X Y,BUNKE H. Simple and fast computation of moments[J].Pattern Recognition,1991,(08):801-806.
  • 8LI B C,SHEN J. Fast computation of moment invariants[J].Pattern Recognition,1991,(08):807-813.
  • 9潘泓,夏良正.一种基于图像边缘的矩计算方法[J].模式识别与人工智能,2003,16(3):292-298. 被引量:4
  • 10曾万梅,吴庆宪,姜长生.基于组合不变矩特征的空中目标识别方法[J].电光与控制,2009,16(7):21-24. 被引量:8

二级参考文献32

  • 1夏良正,李晓兵,罗庆姚.一种新的基于投影的二维矩不变量快速算法[J].东南大学学报(自然科学版),1993,23(1):41-49. 被引量:2
  • 2欧彦江.图像的不变矩特征及NMI特征研究[J].成都电子机械高等专科学校学报,2006,9(2):21-25. 被引量:7
  • 3付波,周建中,彭兵,赵炳.基于仿射不变矩的轴心轨迹自动识别方法[J].华中科技大学学报(自然科学版),2007,35(3):119-122. 被引量:19
  • 4袁强,张正兰.基于Fisher的人脸检测与识别[J].现代计算机,2007,13(5):50-52. 被引量:1
  • 5FLUSSER J, SUK T. Pattern recognition by affine moment invariants [ J ]. Pattern Recognition, 1993,26 ( 1 ) : 167 -174.
  • 6BLANZ V, VETTER T. Face recognition based on fitting a 3D morphable model[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003,25 (9) : 1063 - 1074.
  • 7DRAPER B A, BACK K, BARTLETT M S, et al. Recognizing faces with PCA and ICA[ J]. Computer Vision and Image Understanding,2003, 91 (12) : 115 -137.
  • 8Hu M K. Visual Pattern Recognition by Moment Invariants. IRE Trans on Information Theory, 1962, IT- 8 : 179 - 187.
  • 9Zakaria M F, et al. Fast Algorithm for the Computation of Moment Invariants. Pattern Recognition, 1987, 20(6): 639-643.
  • 10Hatamian M. A Real-time Two-Dimensional Moment Generating Algorithm and Its Single Chip Implementation. IEEE Trans on Acoustic Speech and Signal Pracessing, 1986, 34(3): 546- 553.

共引文献49

同被引文献15

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部