摘要
Pawlak近似算子具有多种推广形式。讨论了完全分配格上的近似算子。通过近似空间中的不确定性映射,分别引入了三种形式的上近似算子及下近似算子,讨论了它们的基本性质及其与已有近似算子之间的关系。研究结果表明,目前文献中出现的多种近似算子可以作为完全分配格上近似算子的特例。
The generalization of Pawlak' s rough approximation operators is an important issue in rough set theory. This paper presents a new approach for the study of rough approximations on a complete completely distributive lattice (CD lattice). Based on the concept of uncertainty mappings, the paper constructs three pairs of upper and lower rough approximations, discusses their basic properties, and investigates the relationships among these rough approximations. It is pointed out that some well known approximation operators are special cases of the operators presented in this paper.
出处
《计算机科学与探索》
CSCD
2013年第1期92-96,共5页
Journal of Frontiers of Computer Science and Technology
基金
国家自然科学基金 Nos.61175044
61175055
中央高校基本科研业务费专项资金 No.SWJTU11ZT29~~
关键词
粗糙集
完全分配格
覆盖
不确定性映射
近似算子
rough set
complete completely distributive lattice (CD lattice)
cover
uncertainty mapping
approximation operator