期刊文献+

带执行机构的航空发动机喷口控制器设计方法 被引量:8

Controller Design Methodology for Aeroengine Nozzle with Actuator
下载PDF
导出
摘要 依据发动机非线性模型求取喷口的动态模型时,存在未建模动态对线性动态模型的建模误差,由此设计的喷口控制器较难达到设计要求,尤其在大范围飞行包线内喷口控制的动态性能将会变坏;同时由于传感器噪声问题、喷口执行机构的位置饱和限制、速率饱和限制的问题,以及PI控制中的积分饱和问题的存在,这些饱和限制等干扰将会影响PI控制器的设计性能。针对上述问题提出了一种带执行机构的喷口控制器的设计方法和抑制饱和限制干扰的喷口控制逻辑设计方法。首先获取了带执行机构的线性动态增广模型,然后针对该增广模型利用迭代线性不等式方法计算了喷口的鲁棒PI控制器,并对控制器输出进行抗饱和修正,从而提高了喷口控制器的鲁棒性。引入所述方法在发动机半物理仿真中进行了验证,在全飞行包线内获得了满意的喷口控制鲁棒性能。 In order to build a nozzle dynamic model based on aeroengine non-linear model,it will induce an error between the nnmodeling dynamics and linear model dynamics resulting in the nozzle controller hard to meet its design requirement and even worse dynamics performance in nozzle control in large range flight envelope. The PI controller design performance can be affected by the sense noise, the position and velocity saturation of the actuators and the integrator wind-up of PI controller. This paper describes a design method for nozzle controller with actuators and a method of controlling logic design to surpass the saturation limitation disturbance to address all the problems above. To improve the robustness of nozzle controller, firstly, a linear dynamic augmented model with actuator should be built. Secondly, by using iterative linear inequality the robust nozzle PI controller can be obtained through augmented model calculation and saturation correction will be applied to control output. This has been verified in hardware in loop of acroengine and achieved high performance of nozzle robust control in overall flight envelop.
作者 蒋毅
出处 《推进技术》 EI CAS CSCD 北大核心 2012年第6期968-973,共6页 Journal of Propulsion Technology
关键词 喷口控制器 未建模动态 控制逻辑 动态性能 Nozzle controller Unmodeling dynamics Control logic Dynamic performance
  • 相关文献

参考文献12

  • 1LinkCJaw;SanjayGarg.PropulsionControlTechnologyDevelopmentintheUnitedStates--AHistoricalPerspec--tive[NASA-TM一2005-213978][R],2005.
  • 2SunJianguo;VasilyevV;IlyasovB.AdvamcedMultivari-ableControlSystemsofAeroengines[M]北京:北京航空航天大学出版社,2005.
  • 3Dean K Frederick,Sanjay Garg,Shrider Adibhatla. Turbo- fan Engine Control Design Using Robust Muhivariable Control Technologies[J].IEEE Transactions on Control Systems Technology,2000,(06):961-970.doi:10.1109/87.880600.
  • 4聂恰耶夫O H;单凤桐;程振海.航空动力装置控制规律与特性[M]北京:国防工业出版社,1999.
  • 5Jaw L C,Mattingly J D. Aircraft Engine Controls:De- sign,System Analysis,and Health Monitoring[M].USA:American Institute of Aeronautics and Astronautics,2009.
  • 6尤?斯?别利肯;汪海源.飞机动力装置自动控制综合系统[M]北京:航空工业出版社,1992.
  • 7樊思齐;徐芸华.航空推进系统控制[M]西安:西北工业大学出版社,1995.
  • 8Philip P Walsh,Paul Fletcher. Gas Turbine Performance[M].UK:Blackwell Science Ltd,2004.
  • 9Gennady G Kulikov,Haydn A. Thompson.Dynamic Modelling of Gas Turbines[M].USA:Springer,2004.
  • 10郑铁军,王曦,罗秀芹,李其汉.建立航空发动机状态空间模型的修正方法[J].推进技术,2005,26(1):46-49. 被引量:28

二级参考文献11

  • 1聂恰耶夫ЮН 单凤桐 程振海译.航空动力装置控制规律与特性[M].北京:国防工业出版社,1999..
  • 2邢家瑞.多状态飞机动力装置的综合控制[M].沈阳:沈阳航空发动机研究所,1996..
  • 3别利肯·尤·斯 汪海源等译.飞机动力装置自动控制综合系统[M].北京:航空工业出版社,1992..
  • 4周克敏 Doyle J C Glover K 毛剑琴 钟宜生 林岩 等译.鲁棒与最优控制Robust and optimal control[M].北京:国防工业出版社,2002..
  • 5Tan Kok Kiong, Wang Qing - Guo, Hang Chang Chieh, et al. Advances in PID control [ M ]. ISBN 1 - 85233 - 138 -0,Springer-Verlag London,1999.
  • 6Astrom K J,Hagglund T.PID controller: theory, design, and tuning[ M ]. Research Triangle Park, NC: Instrument Society of America, 1995.
  • 7Boyd S, Vandenberghe L. Convex optimization[ M] . Cambridge University Press, 2004.
  • 8Gahinet P, Nemirovski A, Laub A J, et al. LMI control toolbox [M]. The Math Works Inc. ,1995.
  • 9Feng Zheng, Qing-Guo Wang, Tong Heng Lee, et al. Robust PI controller design for nonlinear systems via fuzzy modeling approach[J]. IEEE transactions on system, man and cybernetics--Part A: Systems and humans ,2001,31 (6).
  • 10Cao Y Y,Lam J,Sun Y X.Static output feedback stabilization:An ILMI approach[J].Automatica,1998,34:1641-1645.

共引文献32

同被引文献39

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部