摘要
给出的神经网络译码器是为长约束度(K≥11)卷积码译码而设计的。Viterbi译码和序列译码是两种最大似然译码方法,虽然这两种技术能有效地提高误比特率性能,但它们都存在局限性。另外,只要在神经元和数字异或门单元之间建立局部连接,就能非常容易地直接用超大规模集成电路(VLSI)实现硬件。
The neural network decoder presented in this paper is designed for long constraint length convolutional codes (K≥11). The two most effective methods of decoding convolutionally- encoded data are Viterbi decoding and sequential decoding - two maximum likelihood probabilistic decoding techniques. Both techniques are very effective at improving the Bit Error Ratio performance over un - encoded transmission of data, but each method has its limitations. Moreover, With only local connections between neurons and digital Ex - OR cells, direct hardware implementation in a VLSI ASIC is feasible.
出处
《通信技术》
2000年第2期80-82,共3页
Communications Technology
关键词
长约束度
卷积码
神经网络
译码器
long constraint length, convolutional code, neural network, decoder