期刊文献+

长约束度卷积码译码器神经网络结构

A Neural Network Architecture for the Decoding of Long Constraint Length Convolutional Codes
原文传递
导出
摘要 给出的神经网络译码器是为长约束度(K≥11)卷积码译码而设计的。Viterbi译码和序列译码是两种最大似然译码方法,虽然这两种技术能有效地提高误比特率性能,但它们都存在局限性。另外,只要在神经元和数字异或门单元之间建立局部连接,就能非常容易地直接用超大规模集成电路(VLSI)实现硬件。 The neural network decoder presented in this paper is designed for long constraint length convolutional codes (K≥11). The two most effective methods of decoding convolutionally- encoded data are Viterbi decoding and sequential decoding - two maximum likelihood probabilistic decoding techniques. Both techniques are very effective at improving the Bit Error Ratio performance over un - encoded transmission of data, but each method has its limitations. Moreover, With only local connections between neurons and digital Ex - OR cells, direct hardware implementation in a VLSI ASIC is feasible.
作者 刘华章
出处 《通信技术》 2000年第2期80-82,共3页 Communications Technology
关键词 长约束度 卷积码 神经网络 译码器 long constraint length, convolutional code, neural network, decoder
  • 相关文献

参考文献3

  • 1[1]曹志刚,钱亚生.现代通信原理.北京:清华大学出版社,1991:384
  • 2[2]Petsche T, Dickinson B. A Trellis Structured Neural network. Neural Information Processing Systems, New York: American In stitute of Physis, 1988:592 ~ 593
  • 3[3]Liu Huazhang, Yuan Dongfeng. The Neural Decoder for Convolutional Codes on the Mobile Channel. 1998 International Conference on Communication Technology (ICCT'98)S44-02, Beijing, China

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部