期刊文献+

基于人工蜂群算法的船闸高边坡岩体力学参数反分析 被引量:3

Rock Mechanics Parameters Back Analysis of High Slope of Ship Lock Basing on Artificial Bee Colony Algorithm
下载PDF
导出
摘要 人工蜂群算法(ABCA)是一种模仿自然界中蜜蜂群采集蜂蜜的自组织过程,达到寻找复杂映射极值的智能算法。采用人工蜂群算法,对长江上游某船闸施工过程中,岩体开挖产生的高边坡进行岩体力学参数反分析。旨在通过反分析的手段得到的一组更加符合工程实际的岩体力学参数。将反分析得到的这些参数用于该船闸高边坡的开挖正算,并通过实际测点位移监测值和位移计算值的比较,评价反分析得到的这组参数的优劣性。 The Artificial Bee Colony Algorithm (ABCA) is a kind of intelligent algorithm which is used for searching extreme values in a complex function mapping. The ABCA is put forward in emulating the way in which bees collect honey in nature. Use of the ABCA is maken to make the back analysis of rock mechanics parameters of high slope due to the excavation procedure of a ship lock at upper reaches of Yangtze River. The objective is to get a group of rock mechanics parameters, which more satisfy the needs in construction engineering practice, by taking the method of back analysis. The obtained rock mechanics parameters, afterwards, are used in the displacement analysis of the same high slope. By the comparison of the calculating results with the monitoring points' records, the valuation of the required rock mechanics parameters is realized.
作者 王新 梁桂兰
出处 《科学技术与工程》 北大核心 2013年第1期102-107,共6页 Science Technology and Engineering
基金 国家自然科学基金项目(50909038) 教育部博士点基金(20090094120006) 中央高校基本科研业务费专项资金(2009B09714) 江苏省自然科学基金(BK2011743)资助
关键词 人工蜂群算法 ABCA 船闸高边坡 参数反分析 FLAC3D artificial bee colony algorithm ABCA high slope of ship lock back analysis of parame-ters Flac3 D
  • 相关文献

参考文献7

  • 1沈勇.浅谈我国水利水电可持续发展前景[J].科技传播,2011,3(11):77-77. 被引量:2
  • 2Karaboga D. An idea based on honey bee swarm for numerical optimi- zation. Kayseri : Erciyes University, 2005.
  • 3Frisch K V. The dance language and orientation of bees. Cambridge : Harvard University Presse, 1967.
  • 4Seely T D. The wisdom of the hive: The social physiology if honey bee colonies. Cambridge: Harvard University Press, 1995.
  • 5Xu C F, Duan H B. Artificial bee colony (ABC) optimized edge po- tential function (EPF) approach to target recognition for low-altitude aircraft. Pattern Recognition letters, 2010;31(13) : 1759-1772.
  • 6刘勇,马良.函数优化的蜂群算法[J].控制与决策,2012,27(6):886-890. 被引量:18
  • 7石安池,徐卫亚,周家文,张明鸣,张贵科.边坡弹性模量反分析的模拟退火BP网络方法[J].河海大学学报(自然科学版),2006,34(1):69-73. 被引量:9

二级参考文献38

  • 1刘先珊,费文平,张林.一种大坝渗透系数分区反演新方法研究[J].岩土力学,2004,25(11):1823-1827. 被引量:6
  • 2王信茂.水电的优先开发与生态保护[J].中国电力企业管理,2006(1):21-23. 被引量:3
  • 3张治强 冯夏庭 祁宏伟.三峡工程永久船闸高边坡岩体力学参数的敏感度分析[J].东北大学学报:自然科学版,2000,21(6):637-640.
  • 4长江勘测规划设计研究院,长江科学院.长江三峡工程永久船闸边坡变形与稳定反馈分析及预报研究.武汉:长江勘测规划设计研究院,2000..
  • 5Blum C, Merkle D. Swarm intelligence: Introduction and applications[M]. Berlin: Springer-Verlag, 2008.
  • 6Peng F, Tang K, Chen G, et al. Population-based algorithm portfolios for numerical optimization[J]. IEEE Trans on Evolutionary Computation, 2010, 14(5): 782-800.
  • 7Dorigo M, Stutzle T. Ant colony optimization: Overview and recent advances[J]. Handbook of Metaheuristics, 2010, 146: 227-263.
  • 8Olsson A E. Particle swarm optimization: Theory, techniques and applications[M]. New York: Nova Science Publishers, 2011.
  • 9Sung H J. Queen-bee evolution for genetic algorithms[J]. Electronic Letters, 2003, 39(6): 575-576.
  • 10Kara A. Imitation of bee reproduction as a crossover operator in genetic algorithms[C]. Lecture Notes in Computer Science. Springer, 2004, 3157: 1015-1016.

共引文献26

同被引文献38

  • 1木林隆,黄茂松,吴世明.基于反分析法的基坑开挖引起的土体位移分析[J].岩土工程学报,2012,34(S1):60-64. 被引量:19
  • 2贾善坡,伍国军,陈卫忠.基于粒子群算法与混合罚函数法的有限元优化反演模型及应用[J].岩土力学,2011,32(S2):598-603. 被引量:23
  • 3许传华,任青文,周庆华.基于支持向量机和模拟退火算法的位移反分析[J].岩石力学与工程学报,2005,24(22):4134-4138. 被引量:21
  • 4巩向伟,侯丰奎,张卫东,徐永兵.水库大坝安全监测系统及自动化[J].水利规划与设计,2007(2):65-68. 被引量:14
  • 5吕爱钟.巷道围岩参数及地应力可辨识性的探讨[J].岩石力学与工程学报, 1988, 7(2):155-164.
  • 6SAKURAI S, TAKEUCHI K. Back analysis of measured displacement of tunnel[J]. Rock Mechanics And Rock Engineering, 1983, 16(3):173-180.
  • 7KRISTEN H A D. Determination of rock mass elastic moduli by back analysis of deformation measurement[C]//Proceedings of Symposium on Exploration for Rock Engineering. Johannesburg, RSA: (s.n.), 1976:165-172.
  • 8PIERPAOLO ORESTE. Back analysis techniques for the improvement of the understanding of rock in underground constructions[J].Tunneling and Underground Space Technology, 2005, 20(1): 7-21.
  • 9DENG J H, LEE C F. Displacement back analysis for a steep slope at the Three Gorges Project site[J].International Journal of Rock Mechanics & Mining Sciences, 2001, 38(2):259-268.
  • 10MICHELE C, RICHARD J F. Selecting parameters to optimize in model calibration by inverse analysis[J].Computers and Geotechnics, 2004, 31(5):411-425.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部