期刊文献+

求解多维函数优化问题的混沌和声算法 被引量:1

Chaos Harmony Search Algorithm for Optimization
下载PDF
导出
摘要 为了提升和声算法的局部搜索能力,提出了一种新颖的混沌和声算法.新算法首先设计了一种佳点集初始化操作,使得初始和声库更加均匀的分布在定义域空间;其次引入了一种自适应候选和声产生策略,增强了算法的收敛速度;再次设计了一种混沌局部搜索机制,提升算法的局部搜索能力.针对五个标准测试函数的仿真实验结果表明,新算法无论是收敛速度还是求解质量都显著优于基本和声算法. An novel chaos harmony search algorithms(CHS) are proposed to overcome the shortcoming of lacking the local searching ability.Firstly,in order to distribute more evenly in the domain space,the initialized population is generated based on the good point set.Secondly,an adaptive mechanism,in which candidate harmony is generated,is introduced to accelerate the convergence speed.Thirdly,a local search mechanism based on the chaos sequence is designed to improve the local search capability of CHS The simulation results for five benchmarks show that compared with the basic harmony search algorithm,the new algorithms performance better.
作者 闫涛 沙锋
出处 《微电子学与计算机》 CSCD 北大核心 2013年第1期118-122,共5页 Microelectronics & Computer
关键词 优化 混沌 和声算法 optimization chaos harmony search algorithm
  • 相关文献

参考文献6

  • 1Geem Z W,Kim J H. A new heuristic optimization algorithm:harmony search[J].Simulation,2001,(02):60-68.
  • 2Mahdavi M,Fesanghary M,Damangir E. An improved harmony search algorithm for solving optimization problems[J].Applied Mathematics and Computation,2007,(02):1567-1579.doi:10.1016/j.amc.2006.11.033.
  • 3Pan Q K,Suganthan P N,Tasgetiren M F. A self-adaptive global best harmony search algorithm for continuous optimization problems[J].Applied Mathematics and Computation,2010,(03):830-848.
  • 4Wang C M,Huang Y F. Self-adaptive harmony search algorithm for optimization[J].Expert Systems with Applications,2010,(04):2826-2837.
  • 5Omran M G H,Mahdavi M. Global-best harmony search[J].Applied Mathematics and Computation,2008,(02):643-656.doi:10.1016/j.amc.2007.09.004.
  • 6张铃,张钹.佳点集遗传算法[J].计算机学报,2001,24(9):917-922. 被引量:165

二级参考文献9

共引文献164

同被引文献12

  • 1Geem Z W, Kim J H, Loganathan G V. A new heuristic optimization algorithm : harmony search[J].Simulation, 2001,76 ( 2 ) :60 - 68.
  • 2Mahdavi M, Fesanghary M, Damangir E. An improve harmony search algorithm for solving optimization problems [J]. Applied Mathematics and Computation, 2007,188 ( 2 ) : 1567 - 1579.
  • 3Wang C M, Huang Y F. Self-adaptive harmony search algorithm for optimization [J]. Expert System with Applications, 2010,37 (4) : 2826 - 2837.
  • 4Chen J, Pan Q K, Li J Q. Harmony search algorithm wit dynamic control parameters [ J ]. Applied Mathematics a1 Computation,2012,219 ( 2 ) : 592 - 604.
  • 5Ornran M G H, Mahdavi M. Global-best harmony searchJ]. Applied Mathematics and Computation, 2008,198 ( 2 ) : 643 - 656.
  • 6Pan Q K, Suganthan P N, Tasgetiren M F, et al. A self- adaptive global best harmony search algorithm for continuous optimization problems [ J ]. Applied Mathematics and Computation ,2010,216( 3 ) :830 - 848.
  • 7Zou D X, Gao L Q, Wu J H, et al. Novel global harmony search algorithm for unconstrained problems[J]. Neurocomputing ,2010,73 (16) :3308 - 3318.
  • 8Yadav P, Kumar R, Panda S K, et al. An intelligent tuned harmony search algorithm for optimization [ J ]. Information Sciences,2012,196:47 - 72.
  • 9Zhao S Z, Suganthan P N, Pan Q K, et aI. Dynamic multi- swarm particle swarm optimizer with harmony search [ J ]. Expert Systems with Applications,2011,38 (4) :3735 - 3742.
  • 10Tizhoosh R. Opposition-based learning: a new scheme for machine intelligence [ C ]//Proceeding of International Conference on Computational Intelligence Modeling Control and Automation. Vienna,2005:695 - 701.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部