期刊文献+

个人运动管理系统中的行为识别方法 被引量:5

Activity Recognition Method in Personal Exercise Management System
下载PDF
导出
摘要 为使个人运动管理系统更好地感知用户行为,给予科学的运动指导,提出一种基于通用模型迁移的自适应行为识别方法。该方法无需对个体数据进行标定,通过将群体行为的共性知识迁移到个体行为,使通用识别模型可以随着个体行为样本的增多,自适应地调整共性知识,从而形成针对特定个体的个性化行为识别模型。实验结果表明,个性化模型的平均识别精度可以从67.31%提高到83.54%。 To help personal sports management system accurately detect users' activity and give them scientific sports instruction,a common model transferred adaptive activity recognition method is presented.With this method,the common knowledge of many persons can be transferred to a new one and with the new one's data increasing,the model can be automatically adapted to fit the new user.The method proposed is evaluated on real-world dataset to demonstrate its performance.
出处 《计算机工程》 CAS CSCD 2013年第1期213-216,224,共5页 Computer Engineering
基金 国家自然科学基金资助项目(41171341 61070110) 北京市自然科学基金资助项目(4112056)
关键词 运动管理 普适计算 行为识别 迁移学习 机器学习 决策树 exercise management pervasive computing activity recognition transfer learning machine learning Decision Tree(DT)
  • 相关文献

参考文献10

  • 1徐光祐,史元春,谢伟凯.普适计算[J].计算机学报,2003,26(9):1042-1050. 被引量:258
  • 2李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 3Weiser M. The Computer for the Twenty-first Century[J].Scientific American Magazine,1991,(03):94-100.
  • 4徐光祐,曹媛媛.动作识别与行为理解综述[J].中国图象图形学报,2009,14(2):189-195. 被引量:50
  • 5Bao L,Intille S S. Activity Recognition from User Annotated Acceleration Data[A].Vienna,Austria:[s.n.],2004.
  • 6Ravi N,Dandekar N,Mysore P. Activity Recognition from Accelerometer Data[A].Pittsburgh,USA:[s.n.],2005.
  • 7Yin Jie,Chai Xiaoyong,Yang Qiang. High-level Goal Recognition in a Wireless LAN[A].San Jose,USA:[s.n.],2004.
  • 8Yang Jun. Toward Physical Activity Diary:Motion Recognition Using Simple Acceleration Features with Mobile Phones[A].Beijing,China:[s.n.],2009.
  • 9Lee Seon-Woo,Mase K. Recognition of Walking Behaviors for Pedestrian Navigation[A].Mexico City,Mexico:IEEE Press,2001.
  • 10Chen Yiqiang,Zhao Zhongtang,Wang Shuangquan. Extreme Learning Machine Based Device Displacement Free Activity Recognition Model[J].Soft Computing,2012,(09):1617-1625.

二级参考文献147

  • 1Zhang D, Gatica-Perez D, Bengio S, et al. Modeling individual group actions in meetings: a two-layer HMM framework[A]. In: Proceedings of IEEE CVPR Workshop on Detection and Recognition of Events in Video[ C ] , Washington, DC, USA,2004 : 117-125.
  • 2Olivier N, Horovitz E, Garg A. Layered representations for human activity recognition [ A ] . In: Proceedings of IEEE International Conference on Muhimodal Interfaces [ C ] , Pittsburgh, PA, USA, 2002 : 3-8.
  • 3Luo Y, Wu T D, Hwang J N. Object-based analysis and interpretation of human motion in sports video sequences by dynamic Bayesian networks [ J ] . Computer Vision and Image Understanding, 2003, 92(2-3) : 196-216.
  • 4Du Y T, Chen F, Xu W L, et al. Recognizing interaction activities using dynamic Bayesian network [ A ] . In: Proceedings of International Conference on Pattern Recognition [ C ], New York, USA. 2006: 618-621.
  • 5Buxton H, Gong S G. Advanced visual surveillance using Bayesian networks [ A ]. In: Proceedings of International Conference on Computer Vision [ C ] , Boston, MA, USA, 1995 : 111 - 123.
  • 6Oliver N, Horvitz E. A comparison of HMMs and dynamic Bayesian networks for recognizing office activities [ A ]. In: Proceedings of lOth International Conference on User Modeling [ C ] , Edinburgh, UK, 2005 : |99-209.
  • 7Sminchisescu C, Kanaujia A, Metaxas D. Conditional models for contextual human motion recognition [ J ]. Computer Vision and Image Understanding, 2006,104 ( 2-3 ) : 210-220.
  • 8Olival A, Torralba A. The role of context in object recognition[ J]. Trends in Cognitive Sciences, 2007,11(12) : 520-527.
  • 9Torralb A. Contextual priming for object detection [ J ]. International Journal of Computer Vision, 2003, 53(2): 169-191.
  • 10Zibetti E, Tijus C. Perceiving action from static images: The role of spatial context [ J]. Lecture Notes in Computer Science,2003, 2680: 397-410

共引文献355

同被引文献55

  • 1谢幸 郑宇.基于地理信息的用户行为理解.计算机学会通讯,2008,.
  • 2TanPN,SteinbachM,KumarV.数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社.2011.
  • 3薛洋.基于单个加速度传感器的人体运动模式识别[D].广州:华南理工大学.2011.
  • 4Xue Yang, Jin Lianwen. Discrimination between up- stairs and downstairs based on aecelerometer[J]. IE- ICE Transactions on Information and Systems, 2011, E94-D(6), 1173-1177.
  • 5Pan S J, Yang Qiang. A survey on transfer learning [J]. IEEE Transactions on Knowledge and Data Engi- neering, 2010, 22(10): 1345-1359.
  • 6Dai Wenyuan, Yang Qiang, Xue Guirong, et al. Boos- ting for transfer learning[C]//Proceedings of the 24th international conference on Machine learning: ACM Inter- national Conference Proceeding Series. New York:ACM, 2007 : 193-200.
  • 7Chen Yiqiang, Zhao Zhongtang, Wang Shuangquan, et al. Extreme learning machine-based device displace- ment free activity recognition model[J]. Soft Compu- ting, 2012, 16(9): 1617-1625.
  • 8Huang Guangbin, Zhou Hongming, Ding Xiaojian, et al. Extreme Learning Machine for Regression and Multiclass Classification [J]. IEEE Transactions on System, Man, and Cybernetics, Part B~Cybernetics, 2012, 42(2) ,513-529.
  • 9Zhao Zhongtang, Chen Yiqiang, Liu Junfa, et al. Cross-people mo- bile-phone based activity recognition [ C ]//Proc of the 22nd Interna- tional Joint Conference on Artificial Intelligence. 2011:2545-2550.
  • 10Gyiiensten I C, Bonomi A G. Identifying types of physical activity with a single aceeleromters[ ] ]. IEEE Tran on Bio-Medical Engi- neering ,2011,58 (9) :2656-2663.

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部