期刊文献+

Na_2CO_3对TiO_2纳米管电极表面光电化学水分解反应的催化作用研究 被引量:3

Sodium Carbonate Catalyzed Photoelectrochemical Water Splitting over TiO_2 Nanotubes Photoanode
下载PDF
导出
摘要 光生载流子在半导体/溶液界面处发生的表面复合过程,是制约半导体光电极体系光-电转化效率提高的关键因素之一.本文利用光电流测量和交流阻抗等技术,初步研究了Na2CO3对TiO2纳米管电极表面光电化学水分解反应的催化作用,并对"TiO2/溶液"界面处与阳极析氧有关的光生电荷传输过程及特点进行了探讨.结果表明,在0.5 mol.L-1NaClO4溶液中加入少量的Na2CO3(1mmol.L-1),能够显著促进光生空穴穿过TiO2/溶液界面向溶液中的传输,有效地抑制光生载流子的表面复合过程,从而相应地增大了外电路的光电流,并使TiO2光电极体系的光-电转化效率得到提高. Surface recombination of the photogenerated electron-hole pairs at semiconductor/electrolyte interface is one of the most essential reasons responsible for lowering photoconversion efficiency (φ) of light to chemical energy for photoelectrochemical (PEC) water splitting reaction. In this paper,the catalytic effect of sodium carbonate on the oxygen evolution reaction(OER) over TiO2 nanotube photoanode during PEC water splitting was investigated by performing photocurrent and ac impedance measurements. It was demonstrated that the addiction of 1 mmol ·L-1 Na2CO3 in 0.5 mol ·L^-1 NaClO4 electrolyte can effectively improve the charge transfer properties for the photogenerated holes across TiO2/electrolyte interface and inhibit the recombination of photogenerated carriers at this interface. As a result, both the measured photocurrent was increased and the photoconversion efficiency was enhanced.
出处 《电化学》 CAS CSCD 北大核心 2013年第1期71-78,共8页 Journal of Electrochemistry
基金 山东省自然科学基金(No.ZR2010EM026) 山东省优秀中青年科学家奖励基金(No.BS2011NJ009)资助
关键词 光生空穴 表面复合 光电流 阳极析氧 Mott-Schottky分析 photogenerated holes surface recombination photocurrent anodic oxygen evolution Mott-Schottky analysis
  • 相关文献

参考文献1

二级参考文献1

共引文献1

同被引文献34

  • 1崔玉民.影响纳米材料TiO_2光催化活性的因素[J].稀有金属,2006,30(1):107-113. 被引量:32
  • 2Liu Z S, Wu B T, Zhao Y L, et al. Solvothennal synthesis and photocatalytic activity of Al-doped BiOBr micro- spheres[J]. Ceramics International, 2014, 40(4): 5597-5603.
  • 3Bo C, Zhou H, Zhang F, et al. Visible light photocatalytic performance of hierarchical BiOBr microspheres synthe- sized via a reactable ionic liquid[J]. Materials Science in Semiconductor Processing, 2014, 42:58-61.
  • 4Gao M C, Zhang D F, Pu X P, et al. BiOBr photocatalysts with tunable exposing proportion of {001} facets: Com- bustion synthesis, characterization, and high visible-light photocatalytic properties[J]. Materials Letters, 2015, 140 31-34.
  • 5Zhang J, Shi F J, Lin J, et al. Self-assembled 3-D architec- tures of BiOBr as a visible light-driven photocatalyst [J]. Chemistry of Materials, 2008, 20(9): 2937-2941.
  • 6Shang M, Wang W Z, Zhang L. Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template[J]. Journal of Hazardous Materials, 2009, 167( 1-3): 803-809.
  • 7Wang P, Zhai Y M, Wang D J, et al. Synthesis of reduced graphene oxide-anatase Ti02 nanocomposite and its im proved photo-induced charge transfer properties[J]. Nano- scale, 2011, 3(4): 1640-1645.
  • 8Williams G, Kamat P V. Graphene-semiconductor nano- composites: Excited-state interactions between ZnO nanoparticles and grapheme oxide[J]. Langmuir, 2009, 25 (24): 13869-13873.
  • 9Williams G, Seger B, Kamat V. TiO2-graphene nano- composites. UV-assisted photocatalytic reduction of grapheme oxide[J]. Nanoscale, 2008, 2(7): 1487-1491.
  • 10Huang X, Qi X Y, Boey F, et al, Graphene-based compos- ites[J]. Chemical Society Reviews, 2012, 41(2): 666-686.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部