摘要
设P与Q为平面上两个互不相交的凸多边形,则在P与Q之间必存在两条正支撑线和两条科支撑线,确定它们就可以确定P与Q的凸壳和P与Q的全部可移动方向,这在机器人学、几何布局及VLSI设计等领域具有重要实用意义。本文给出统一确定这些支撑线的快速算法,其时间复杂度为O(logm·logn),其中m与n分别为P与Q的顶点数。
Let P and Q be two arbitrary disjoint convex polygons on a plane. Between P and Q, theremust be two principal supporting lines and two oblique supporting lines. They are very critical todecide the convex hull of the union of P and Q and all directions along which P moves withoutcollision with Q. ttis paper gives a unified algorithm for efficiently determining all the foursupporting lines with the time complexity of (logm*logn), where m and n denoto the numer ofvertices of P and Q.
出处
《工程图学学报》
CSCD
2000年第2期52-58,共7页
Journal of Engineering Graphics
关键词
凸多边形
支撑线
凸壳
可移动方向
快速算法
convex polygon, supporting line, convex hull, movable direction