期刊文献+

促进静电纺丝支架中细胞渗透生长的研究进展 被引量:1

PROGRESS ON CELL INFILTRATION IN ELECTROSPUN SCAFFOLD
原文传递
导出
摘要 目的综述改进静电纺丝(简称电纺)技术促进支架内细胞渗透生长的研究进展。方法查阅近年有关改进电纺技术促进支架内细胞渗透生长的相关文献,对相关技术方法和促进支架内细胞渗透生长的效果进行回顾及综合分析。结果改进方法包括电纺参数调节、电纺支架加工修饰、细胞-支架复合物动态培养和其他方法等,但效果有限,仍需进一步优化。结论细胞在支架中的渗透生长在组织工程研究中意义重大,电纺技术应用瓶颈在于其致密排列的纤维和过小的腔隙孔径,限制了支架内细胞的渗透生长,多种改进技术的联合应用将是解决这一难题的方法。 Objective electrospun scaffold. Methods To introduce the research progress on the technique of improving cell infiltration in The recent original articles about improving cell infiltration in electrospun scaffold were extensively reviewed and analyzed. Results The technique includes regulation of the electrospun parameters, modification of electrospun scaffold, and dynamic culture of scaffold-cells composite etc. The effect is limited and most of them need further optimization. Conclusion Cell infiltration in electrospun scaffold is of great significance in tissue engineering application. The relatively high compressed density and small pore size have become the bottleneck problem that prevents cell infiltration and tissue ingrowth into the scaffold. The combination of different techniques will be more effective to overcome this problem.
出处 《中国修复重建外科杂志》 CAS CSCD 北大核心 2013年第2期219-222,共4页 Chinese Journal of Reparative and Reconstructive Surgery
基金 国家自然科学基金资助项目(11172208)~~
关键词 组织工程 静电纺丝技术 支架材料 渗透生长 Tissue engineering Electrostatic spinning Scaffold material Infiltration
  • 相关文献

参考文献3

二级参考文献96

  • 1涂秋芬,张怡,李艳,陈槐卿.一种新型的脱细胞组织工程血管支架的构建和评价[J].生物医学工程学杂志,2007,24(2):379-384. 被引量:6
  • 2Lim SS, Gaziano TA, Gakidou E, et al. Prevention of cardiovascular disease in high-risk individuals in low-income and middle-income countries: health effects and costs. Lancet, 2007, 370(9604): 2054-2062.
  • 3Hibino N, Imai Y, Shin-oka T, et al. First successful clinical application of tissue-engineered blood vessel. Kyobu Geka, 2002, 55(5): 368-373.
  • 4Shin'oka T, Matsumura G, Hibino N, et al. Midterm clinical result of tissue-engineered vascular autografts seeded with autologous bone marrow cells. J Thorac Cardiovasc Surg, 2005, 129(6): 1330-1338.
  • 5Weinberg CB, Bell E. A blood vessel model constructed from collagen and cultured vascular cells. Science, 1986, 231 (4736): 397-400.
  • 6Grange JJ, Davis V, Baxter BT. Pathogenesis of abdiminal aortic aneurysms: An update and look toward the future. Cardiovasc Surg, 1997, 5(3): 256-265.
  • 7Baltoyannis G, Mitsis M, Nathanael C, et al. Submucosa of canine small intestine as an alternative medium-diameter autogenous arterial graft. Int Angiol, 2000, 19(3): 280-284.
  • 8Isenberg BC, Williams C, Tranquillo RT. Small-diameter artificial arteries engineered in vitro. Circ Res, 2006, 98(1): 25-35.
  • 9Shinoka T, Shum-Tim D, Ma PX, et al. Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg, 1998, 115(3): 536-545.
  • 10Hoerstrup SP, Zund G, Sodian R, et al. Tissue engineering of small caliber vascular grafts. Eur J Cardiothorac Surg, 2001, 20(1): 164-169.

共引文献11

同被引文献23

  • 1Zhang Q, Yao K, Liu L, et al. Evaluation of porous collagen membrane in guided tissue regeneration. Artificial Cell Blood Substit Immobil Biotechnol, 1999, 27(3): 245-253.
  • 2Solchaga LA, Temenoff JS, Gao J, et al. Repair of osteochondral defects with hyaluronan and polyester-based scaffolds. Osteoarthritis Carti- lage, 2005, 13(4): 279-309.
  • 3Jeon YH, Choi JH, Sung JK, et al. Different effects of PLGA and chito- san scaffolds on human cartilage tissue engineering. J Craniofac Surg, 2007, 18(6): 1249-1258.
  • 4Wang Y, Bian YZ, Wu Q, et al. Evaluation of three-dimensional scaf- folds prepared from poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials, 2008, 29(19): 2858-2868.
  • 5Li WJ, Richard T, Chukwuka O, et al. A three-dimensional nanofi- brons scaffold for cartilage tissue engineering using human mesenchy- mal stem cells. Biomaterials, 2005, 26(6): 599-609.
  • 6Liao J, Guo X, Grande-Allen KJ, et al. Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for carti- lage tissue engineering. Biomaterials, 2010, 31(34): 8911-8920.
  • 7Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev, 2008, 60(2): 243-262.
  • 8Laurens E, Schneider E, Winalski CS, et al. A synthetic cartilage extra- cellular matrix model: hyaluronan and collagen hydrogel relaxivity, impact of macromolecular concentration on dGEMRIC. Skeletal Ra- diol, 2012, 41(2): 209-217.
  • 9Ma R, Li M, Luo J, et al. Structural integrity, ECM components and immunogenicity of decellularized laryngeal scaffold with preserved cartilage. Biomaterials, 2013, 34(7): 1790-1798.
  • 10Lau TT, Lee LQ, Vo BN, et al. Inducing ossification in an engineered 3D scaffold-free living cartilage template. Biomaterials, 2012, 33(33): 8406-8417.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部