摘要
考虑Poisson方程的非线性扰动的Dirichlet问题-Δu =g(x) +λh(x,u,Du) x∈Ω ( 1 )u| Ω =0 ( 2 )其中λ∈R ,Ω是Rn 中具有C2 ,α 边界的有界区域 ,n∈N ,α∈ ]0 ,1 [.用截断函数法和Schauder不动点定理得到定理 设g∈Cα( Ω) ,h∈Cα( Ω×R×Rn) ,则存在δ >0 ,使得当 |λ|<δ时 ,问题 ( 1 ) ,( 2 )在C2 ,α( Ω)
Consider Dirichlet boundary value problem of the perturbation of Poisson e quation-Δu=g(x)+λh(x, u, Du)\ \ \ x∈Ω(1) u|\-\{Ω\}=0(2)\%where\% λ∈R, Ω (R\+n)\% is a bounded domain with\% C\+\{2,α\} \%boundary , n∈N, α∈ ]0, 1[. With the cut function method and Schauder's fixed point theorem, th e following theorem is proved.\;Theorem\ Assume that\% g∈C\+2() and h∈C\+2(×R×R\+n)\%. The n there es ists \%δ\%>0 such that for every \%|λ|<δ, \%problem (1), (2) has at least one solution in\% C\+\{2,α\}().\%\%
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2000年第3期225-227,共3页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目!( 198710 67)
关键词
拟线性
非线性扰动
椭圆型方程
POISSON方程
quasilinear partial differential equation
nonlinear pe rturbation
the cut function method
the maximum principle