期刊文献+

石墨烯的化学气相沉积生长与过程工程学研究 被引量:18

CVD process engineering for designed growth of graphene
原文传递
导出
摘要 石墨烯作为由sp2杂化的碳原子键合而成的二维原子晶体,其独特的能带结构和优良的电学、热学和力学性质一直吸引着人们的广泛关注,并有望在未来的半导体工业中得到实际应用.然而,高质量石墨烯的大规模可控制备仍然存在着诸多挑战性的问题,也是石墨烯工业化应用的瓶颈所在.化学气相沉积(CVD)技术在大面积生长高质量石墨烯方面拥有独特的优势,已成为石墨烯生长领域的主流技术.我们近年来一直致力于发展石墨烯的CVD生长方法,通过对表面催化生长的基元步骤的设计与控制,实现了对石墨烯的结构和层数的有效调控,并形成了CVD生长的过程工程学指导思想.本文从对石墨烯的CVD生长机理的分析入手,系统介绍了我们开展的过程工程学研究,并对该领域的未来发展趋势以及所面临的机遇和挑战进行了简要的展望. Graphene, the two-dimensional network of sp2-hybridized carbon atoms, has attracted worldwide interest because of its unique energy band structure as well as its outstanding electronic, thermal and mechanical properties. The extremely high carrier mobility in graphene provides a great potential for next-generation ultrafast graphene-based electronic devices. One of the bottle-neck challenges for graphene electronics is the controlled growth of high-quality graphene. Among the typical techniques reported for graphene production, chemical vapor deposition (CVD) has been paid particular attention for its reliability and facile access to highly-crystalline and large-area graphene. We are working on controlled CVD growth of graphene following a concept of process engineering. Our general strategy is to design and control the elementary steps of catalytic CVD process for achieving a precise control over layer thickness, stacking order, domain size, doping and energy band structure. In this paper, we will show a few typical examples to demonstrate such kinds of process engineering for the designed growth of graphene together with a brief discussion on the future directions, challenges and opporttmities in this fascinating research area.
出处 《中国科学:化学》 CAS CSCD 北大核心 2013年第1期1-17,共17页 SCIENTIA SINICA Chimica
基金 国家自然科学基金(51121091 20973013 51072004) 科技部纳米重大研究计划(2011CB933003 2012CB933404)资助
关键词 石墨烯 控制生长 化学气相沉积 催化剂 过程工程学 graphene, controlled growth, chemical vapor deposition, catalyst, process engineering
  • 相关文献

参考文献2

二级参考文献1

共引文献26

同被引文献241

  • 1李向阳,许金通,汤英文,李雪,张燕,龚海梅,赵德刚,杨辉.GaN基紫外探测器及其研究进展[J].红外与激光工程,2006,35(3):276-280. 被引量:45
  • 2谢红旗,周春山,刘梦琴,曾荣英.聚苯基荧光酮修饰玻碳电极吸附溶出伏安法测定痕量汞[J].理化检验(化学分册),2007,43(2):141-143. 被引量:4
  • 3Novoselov K S, Geim A K,Morozov S V, et al. Electric field effect in atomically thin carbon films [ J ]. Science, 2004, 306(5696) : 666-669.
  • 4Geim A K,Novoselov K S. The rise of graphene[ J]. Nature materialsT 2007,6(3) : 183-191.
  • 5Geim A K. Graphene: status and prospects[ J]. Science, 2009,324(5934) : 1530-1534.
  • 6Wu J , Pisula Vt', Mullen K. Graphenes as potential material for electronics[ J] . Chemical reviews, 2007, 107(3) : 718-747.
  • 7Rao CNR, Sood A K,Voggu R, et al. Some novel attributes of graphene[ J]. The Journal of Physical Chemistry letters, 2010,1(2) : 572-580.
  • 8Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[ J]. Chemical reviews, 2009, 110(1) : 132-145.
  • 9Lee C,Wei X,Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[ J]. Science,2008, 321(5887) : 385-388.
  • 10Nair R R,Blake P, Grigorenko A N, et al. Fine structure constant defines visual transparency of graphene[ J]. Science,2008,320(5881) : 1308-1308.

引证文献18

二级引证文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部