期刊文献+

DDBN的无人机决策推理模型参数学习 被引量:1

Parameter Study for Model of Decision-making and Reasoning Based on DDBN
下载PDF
导出
摘要 针对复杂战场环境下的无人机决策推理模型参数学习的问题,提出基于遗传算法的离散动态贝叶斯网络参数学习算法。该算法将模型网络参数的最大似然估计函数作为遗传算法的适应度函数,在全局进行并行优化搜索,得到最优的网络参数,从而提高了决策推理模型对复杂环境的快速适应。仿真结果表明,该算法可以获得准确的离散动态贝叶斯网络参数,能够有效地解决复杂战场环境下无人机威胁评估问题,为无人机的自主任务决策提供有效的参数保障。 A parameter learning algorithm for the discrete dynamic Bayesian networks based on genetic algorithm is proposed concerning the problem of the parameter learning for the UAV's decision-making and reasoning model under complicated tactical environment.The algorithm employs the maximum likelihood estimating function of the model's network parameters as the fitness function for the genetic algorithm and searches the global optimum.By virtue of these measures,the algorithm's quick adaptability to the complicated environment is achieved.Furthermore,the simulation study also demonstrates that the algorithm can find the precise parameters for the discrete dynamic Bayesian networks,which underlies the solid parameter support for the autonomous decision making needed by UAV's task assignment.
出处 《火力与指挥控制》 CSCD 北大核心 2013年第1期26-29,共4页 Fire Control & Command Control
基金 全国高校博士点基金资助项目(20116102110026)
关键词 离散动态贝叶斯网络 参数学习 遗传算法 无人机 决策推理模型 discrete dynamic Bayesian network parameter learning genetic algorithm Unmanned Aerial Vehicle(UAV) model of decision-making and reasoning
  • 相关文献

参考文献12

  • 1董卓宁,张汝麟,陈宗基.无人机在恶劣气象条件下的自主决策技术[J].航空学报,2008,29(B05):107-113. 被引量:15
  • 2David E G. Genetic Algorithms in Search,Optimization,and Machine Learning[M].MA:Addison-Wesley,1989.
  • 3张连文;郭海鹏.贝叶斯网引论[M]北京:科学出版社,2006.
  • 4Mark L H,Olga S,Karen A H. On-Line Situation Assessment for Unmanned Air Vehicles[A].Kye West.FL,2001.
  • 5Mark L H,Karen A H. An Intelligent Agent for Supervisory Control of Teams of Uninhabited Combat Air Vehicles (UCAVS)[A].Orlando,Florida,2000.
  • 6Mulgund S,Rinkus G,Illgen C. OLIPSA:On-Line Intelligent Processor for Situation Assessment[A].Patuxent River,MD,US,1997.
  • 7任佳,高晓光,郑景嵩,张艳.复杂环境下的无人机任务决策模型[J].系统工程与电子技术,2010,32(1):100-103. 被引量:17
  • 8Radu S N,Tom M,Bharat R R. Bayesian Network Learning with Parameter Constraints[J].In Advances in Neural Information Processing Systems,2005,(10):1-48.
  • 9Simon T,Daphne K. Active Learning for Parameter Estimation in Bayesian net-works[J].In Advances in Neural Information Processing Systems,2000,(13):647-653.
  • 10俞奎,王浩,姚宏亮,陈栋梁.并行的贝叶斯网络参数学习算法[J].小型微型计算机系统,2007,28(11):1972-1975. 被引量:6

二级参考文献50

共引文献40

同被引文献12

  • 1张少中,章锦文,张志勇,韩美君,王秀坤.面向大规模数据集的贝叶斯网络参数学习算法[J].计算机应用,2006,26(7):1689-1691. 被引量:4
  • 2史志富,张安.贝叶斯网络理论及其在军事系统中的应用[M].北京:国防工业出版社,2012:28-29.
  • 3俞奎,王浩,姚宏亮,陈栋梁.并行的贝叶斯网络参数学习算法[J].小型微型计算机系统,2007,28(11):1972-1975. 被引量:6
  • 4Park C Y, Laskey K B, Costa P C G, et al. Multi-Entity Bayesian Networks Learning In Predictive Situation Aware- ness[ C]//Proceedings of the 18th International Command and Control Technology and Research Symposium. [ S. 1. ] : [ s. n. ] ,2013.
  • 5Masegosa A R, Moral S. An interactive approach for Bayes- ian network learning using domain expert knowledge[ J]. In-ternational Journal of Approximate Reasoning,2013,54(8 ) : 1168 - 1181.
  • 6Ngai E W T, Hu Y, Wong Y H, et al. The application of da- ta mining techniques in financial fraud detection:A classifi- cation framework and an academic review of literature [ J ]. Decision Support Systems ,2011,50( 3 ) :559 - 569.
  • 7Spiegelhalter D J,Dawid A P,Lauritzen S L,et al. Bayesian analysis in expert systems [ J ]. Statistical science, 1993,8 (3) :219 -247.
  • 8Heckerman D. A tutorial on learning with Bayesian net- works[ M]. US :Springer Netherlands, 1998.
  • 9Lauritzen S L. The EM algorithm for graphical association models with missing data [ J ]. Computational Statistics & Data Analysis, 1995,19 (2) : 191 - 201.
  • 10Jensen F,Jensen F V, Dittmer S L. From influence diagrams to junction trees [ C ]//Proceedings of the Tenth internation- al conference on Uncertainty in artificial intelligence. Mor- gan Kaufmann Publishers Inc. , 1994:367 - 373.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部