期刊文献+

基于Hopfield网络的时滞分析故障诊断策略 被引量:6

Fault strategy of time delay analysis based on Hopfield network
下载PDF
导出
摘要 振荡是化工过程中常见的对全流程运行性能有显著影响的故障类型,仅基于数据幅值域知识的故障诊断方法对这一类故障诊断性能不佳。时滞分析基于数据信号时域知识,根据波形相关性分析变量之间因果关系,通过得到的因果模型确定故障完整传播路径,可进一步识别出扰动发生的根本原因。将Hopfield网络与时滞分析相结合,解决了时滞分析当变量数众多时,从变量对的因果关系难以得到故障传播路径的问题,并同时讨论了时滞分析数据窗选取、对称时滞确立等的原则,提升了故障传播路径建立的准确度,建立了基于时滞分析的完备的故障诊断策略,最后通过TE模型验证了方法的优越性。 Oscillations are a common type of plant-wide disturbances in chemical process, which may impact overall process performance. Normally, the fault diagnosis methods only based on the amplitude domain of data have a poor performance on these problems. The method introduced, time delay analysis, based on the time domain knowledge of data, could establish the fault propagation path and identify the root cause of the oscillation. The innovation of this paper was to combine the Hopfield network and time delay analysis method and create a complete fault isolation strategy. The approach was applied to the Tennessee Eastman (TE) model and the result proved its good quality for industry application.
作者 贺丁 赵劲松
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第2期633-640,共8页 CIESC Journal
基金 国家重点基础研究发展计划项目(2012CB720500)~~
关键词 时滞分析 HOPFIELD网络 旅行商问题 故障诊断 time delay analysis Hopfield network traveling salesman problem fault diagnosis
  • 相关文献

参考文献13

  • 1Jiang H,Shoukat Choudhury M A A,Shah S L. Detection and diagnosis of plant wide oscillations from industrial data using the spectral envelope method[J].Journal of Process Control,2007,(02):143-155.
  • 2戴一阳,陈宁,赵劲松,陈丙珍.人工免疫系统在间歇化工过程故障诊断中的应用[J].化工学报,2009,60(1):172-176. 被引量:13
  • 3Thornhill N F,Shah S L,Huang B. Spectral principal component analysis of dynamic process data[J].Control Engineering Practice,2002,(08):833-846.
  • 4Bauer M,Thornhill N F. A practical method for identifying the propagation path of plant wide disturbances[J].Journal of Process Control,2008,(7/8):707-719.
  • 5贺丁,舒逸聃,赵劲松.基于改进的时滞分析算法的化工过程故障定位[J].化工学报,2012,63(10):3165-3172. 被引量:4
  • 6Chiang L H,Russell E L,Braatz R D. Fault Detection and Diagnosis in Industrial Systems[M].London:Library of Congress Cataloging-in-Publication Data,1975.174.
  • 7Jiang H,Patwardhan R,Shah S L. Root cause diagnosis of plant-wide oscillations using the concept of adjacency matrix[J].Journal of Process Control Special Section on Hybrid Systems:Modeling Simulation and Optimization,2009,(08):1347-1354.
  • 8Gigi S,Tangirala A. Quantitative analysis of directional strengths in jointly stationary linear multivariate processes[J].Biological Cybernetics,2010,(02):119-133.doi:10.1007/s00422-010-0386-6.
  • 9应怀樵.波形和频谱分析与随机数据处理[M]北京:中国铁道出版社,198383.
  • 10Hopfied J J. Neural networks and physical systems with emergent collective computational abilities[J].Biophysics,1982.2554-2558.

二级参考文献25

  • 1邓懿波,谭志洪,黄媛.小波降噪影响因素的研究[J].华东交通大学学报,2005,22(2):161-164. 被引量:12
  • 2Birol G, Undey C,Cinar A. A modular simulation packagefor fed batch fermentation : penicillin production Computers and Chemical Engineering, 2002, 26 (11):1553-1565
  • 3Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri S N. A review of process fault detection and diagnosis ( Ⅰ ) : Quantitative model based methods. Computers and Chemical Engineering, 2003, 27:293 -311
  • 4Mo Hongwei(莫宏伟).Artificial hnmune System Theory and Application(人工免疫系统原理与应用).Harbin:Harbin Institute ot Technology Press, 2003
  • 5Jerne N K. Towards a network theory of the immune system. Annual Immunology, 1974, 125C: 373 -389
  • 6Ishida Y. Fully distributed diagnosis by PDP learning algorithm: towards immune network PDP model// Proceeding of IJCNN 1990. San Diego, 1990
  • 7Aguilar J. An artificial immune system for fault detection// Proceedings of IEA/AIE. 2004:219 -228
  • 8Xu I J, Chow M. Power Distribution System Fault Diagnosis Using Hybrid Algorithm of Fuzzy Classitication and Artificial hnmune Systems. Berlin/Heidelberg: Springer, 2008, 357 -372
  • 9Yuan S, Chu F. Fault diagnosis based on support vector machines with parameter optimizations by artificial immunization algorithm. Mechanical Systems and Signal Processing, 2007, 21 (3): 1318- 1330
  • 10Branco P J C, Dente J A, Mendes R V. Using immunology principles for fault detection. IEEE Transactions on Industrial Electronic, 2003, 50 (2): 362 -373

共引文献15

同被引文献58

引证文献6

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部