期刊文献+

质子传导膜内受限空间离子扩散过程 被引量:4

Ion diffusion behaviors through porous proton conductive membrane
下载PDF
导出
摘要 以具有纳米尺度孔径的聚偏氟乙烯(PVDF)质子传导膜为对象,研究电解质溶液中水合离子在受限空间内的传递行为,证明使用纳米尺度多孔膜代替离子交换膜用于液流电池过程的可行性。利用渗透实验分别研究浓度场、压力场,以及不同渗透压条件下膜中离子扩散和水迁移现象,分析传质行为与膜结构和组成之间的关系。结果表明离子在纳米尺度孔径的PVDF膜中的扩散过程与溶液中类似,表观离子扩散系数不受浓度差推动力的影响;离子交换膜中的表观离子扩散系数随浓度差推动力提高而增加。在渗透压作用下,自制PVDF纳米孔膜的水迁移速率低于Nafion 117膜,水迁移带来的负面影响更小;对于H+/VO2+的离子选择系数超过300,有效透过H+而阻止VO2+,适用于全钒液流电池过程。 To prove the feasibility that nano-scale porous membrane can replace ion exchange membrane used for vanadium redox flow battery (VRB), mass transfer of hydrated-ion in electrolyte solution through a limited space formed by PVDF nano-porous proton conductive membranes was studied. On a self- designed ion diffusion cell, NaC1 and water permeation processes were measured under given concentration and hydrodynamic gradient, as well as osmotic pressure. The results obtained can be applied to correlate mass transport behaviors with membrane morphology. The results show that the behavior of ion diffusion through nano-scale limited space is similar to that in a bulk electrolyte solution; apparent diffusion coefficients are independent of ion concentration. In contrast, apparent diffusion coefficients of ion permeation through ion exchange membrane obviously increase with concentration gradient. For a given osmotic pressure, PVDF nano-porous proton conductive membranes have smaller water permeation rate than that of Nafion 117, and negative influence is also much smaller. Self-made PVDF proton conductive membrane can effectively reject VO^2+ , providing selectivity over 300 for H^+/VO^2+ electrolyte at ambient temperature, which means that it is possible to replace ion exchange membrane in flow battery application.
出处 《化工学报》 EI CAS CSCD 北大核心 2013年第2期689-695,共7页 CIESC Journal
基金 化学工程联合国家重点实验室2011年自主课题立项支持 国家自然科学基金项目(21076112,21276134) 国家重点基础研究发展计划项目(2010CB227202)~~
关键词 全钒液流电池 质子传导 离子扩散系数 受限空间 膜结构 all-vanadium redox flow battery proton conduction ion diffusion coefficient~ limited space membrane morphology
  • 相关文献

参考文献19

  • 1Skyllas-Kazacos M,Chakrabarti M H,Hajimolana S A,Mjalli F S Saleem M. Progress in flow battery research and development[J].Journal of the Electrochemical Society,2011,(08):R55-R79.
  • 2Weber A Z,Mench M M,Meyers J P,Ross P N Gostick J T Liu Qinghua. Redox flow batteries:a review[J].Journal of Applied Electrochemistry,2011.1137-1164.
  • 3尹海涛.Study on all-vanadium redox flow battery for electricity energy storage[D]北京:清华大学,2006.
  • 4Jia Zhijun,Wang Baoguo,Song Shiqiang,Chen Xiao. Effect of polyhydroxy-alcohol on the electrochemical behavior of the positive electrolyte for vanadium redox flow batteries[J].Journal of the Electrochemical Society,2012,(06):A843-A847.
  • 5陈金庆,王保国,杨基础.VO^(2+)/H^+在阳离子交换膜中的吸附平衡[J].清华大学学报(自然科学版),2009(6):884-887. 被引量:3
  • 6王保国.新能源领域的质子交换膜研究与应用进展[J].膜科学与技术,2010,30(1):1-8. 被引量:18
  • 7Chen Jinqing,Wang Baoguo,Yang Jichu. Adsorption and diffusion of VO2+ and VO2+ across cation membrane for allvanadium redox flow battery[J].Solvent Extraction and Ion Exchange,2009.312-327.
  • 8陈金庆,朱顺泉,王保国,杨基础.全钒液流电池开路电压模型[J].化工学报,2009,60(1):211-215. 被引量:19
  • 9Mai Zhensheng,Zhang Huamin,Li Xianfeng,Xiao Shaohua Zhang Hongzhang. Nafion/polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application[J].Journal of Power Sources,2011.5737-5741.
  • 10Trogadas P,Pinot E,Fuller T F. Composite solvent-casted Nafion membranes for vanadium redox flow batteries[J].Electrochemical and Solid State Letters,2012,(01):A5-A8.

二级参考文献97

共引文献48

同被引文献62

  • 1刘素琴,桑玉,李林德,黄可龙.电位滴定法测定钒电池电解液中不同价态的钒[J].理化检验(化学分册),2007,43(12):1077-1078. 被引量:21
  • 2贾志军,宋士强,王保国.液流电池储能技术研究现状与展望[J].储能科学与技术,2012,1(1):50-57. 被引量:27
  • 3潘建欣,谢晓峰,王金海,王树博,尚玉明,周涛.全钒液流电池模拟与仿真研究进展[J].化工学报,2011,62(S2):7-15. 被引量:15
  • 4Rychcik M, Skyllas-Kazacos M. Characteristics of a new all vanadium redox flow battery [J]. J Power Sources, 1988,22(1) :59-67.
  • 5Skyllas-Kazacos M, Kazacos M. State of charge moni- toring methods for vanadium redox flow battery control [J]. Journal of Power Sources,2011,196 :8822-8827.
  • 6Weber A Z,Meneh M M,Meyers J P,et al. Redox flow batteries: a review[J]. J Appl Electrochem, 2011,41 : 1137-1164.
  • 7Tang B, Yan C W, Wang F H. Modification and evalu- ation of membrane for vanadium redox battery applica- tions[J]. J Appl Electrochem, 2004,34 : 1205-1210.
  • 8Mohammadi T, Chieng S C, Skyllas-Kazacos M. Water transport study across commercial ion exchange mem- branes in the vanadium redox flow battery[J]. J Membr Sci, 1997,133 : 151- 159.
  • 9Sukkar T, Skyllas-Kazacos M. Water transfer behavior across cation exchange membranes in the vanadium red- ox battery[J]. J Membr Sci, 2003,222 : 235- 247.
  • 10Sun C X, Chen J, Zhang H M, etal. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery [J]. J Power Sources, 2010,195. 890-897.

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部