期刊文献+

一类具有吸收效应的时滞病原体免疫模型(英文) 被引量:4

A Delayed Pathogen-immune Model with Absorption
下载PDF
导出
摘要 研究了一类具有吸收效应的时滞病原体免疫模型.推导出系统的基本再生数与免疫再生数的表达式.通过运用Lyapunov泛函方法,分别给出了系统的无病平衡点、无免疫平衡点及地方病平衡点全局渐近稳定的条件. A new delayed mathematical model for pathogen-immune with absorption was considered.The detailed expressions of the basic reproduction number and the immune reproduction number were derived.The conditions,under which the disease-free equilibrium,the immune-free equilibrium and the interior equilibrium are globally asymptotically stable,were given by using the method of Lyapunov functional,respectively.
作者 王霞 宋强
出处 《信阳师范学院学报(自然科学版)》 CAS 北大核心 2013年第1期12-16,共5页 Journal of Xinyang Normal University(Natural Science Edition)
基金 National Natural Science Foundation of China(11171284) Scientific and Technological Project of Henan Province(122300410034,092102210070) Universities Young Teachers Program of Henan Province(2010GGJS-104) Youth Science Foundations of Xinyang Normal University(2012)
关键词 全局稳定 时滞 病原体免疫 吸收 LYAPUNOV泛函 global stability delay pathogen-immune absorption Lyapunov functional
  • 相关文献

参考文献1

二级参考文献10

  • 1Kajiwara T,Sasaki T. Global stability of pathogen-immune dynamics with absorption[J].J Biol Dyn,2010,(3):258-269.doi:10.1080/17513750903051989.
  • 2Anderson R M,May R M,Gupta S. Non-linear phenomena in host-parasite interactions[J].Parasitology(Cambridge),1989.59-79.
  • 3Perelson A S,Nelson P W. Mathematical analysis of HIV-1 dynamics in vivo[J].SIAM Review,1999.3-44.doi:10.1137/S0036144598335107.
  • 4Nowak M,May R M. Virus Dynamics[M].Oxford:Oxford University Press,2000.
  • 5Gravenor M B,McLean A R,Kwiatkowski D. The regulation of malaria parasitaemia[J].Parasitology(Cambridge),1995.115-122.
  • 6WANG Xia,TAO Youde. Lyapunov function and global properties of virus dynamics with CTL immune response[J].Int J Biomath,2008,(04):443-448.
  • 7Iggidr A,Kamgang J C,Sallet G,Tewa J J. Global analysis of new malaria intrahost models with a competitive exclusion principle[J].SIAM Journal on Applied Mathematics,2006,(1):260-278.doi:10.1137/050643271.
  • 8Nowak M A,Bangham C R M. Population dynamics of immune responses to persistent viruses[J].Science,1996.74-79.doi:10.1126/science.272.5258.74.
  • 9Nelson P W,Perelson A S. Mathematical analysis of delay differential equation models of HIV-1 infection[J].Mathematical Biosciences,2002,(1):73-94.doi:10.1016/S0025-5564(02)00099-8.
  • 10Hale J,Verduyn Lunel S M. Introduction to Functional Differential Equations[M].New York:springer-verlag,1993.

共引文献8

同被引文献24

  • 1庞海燕,王稳地,王开发.考虑CTL免疫反应的病毒动力学模型的全局稳定性分析(英文)[J].西南师范大学学报(自然科学版),2005,30(5):796-799. 被引量:24
  • 2A S Perelson,P W Nelson. Mathematical Analysis of HIV-1 Dynamics in Vivo[ J ]. SIAM Review, 1999,41 (1) :3-44.
  • 3D S Callaway, A S Perelson. HIV-1 Infection and Low Steady State Viral loads [ J ]. Bulletin of Mathematical Biology, 2002, 64:29-64.
  • 4Lyapunov A M.The general problem of the stability of motion[M].London:Taylor and Francis,1992.
  • 5Capasso V.Mathematical structure of epidemic systems[M].Berlin:Springer,1993.
  • 6Levin S A,Hallam T G,Gross L J.Applied mathematical ecology[M].New York:Springer,1989.
  • 7Capasso V,Serio G.A generalization of the Kermack-McKendrick deterministic epidemic model[J].Mathematical Biosciences,1978,42(1/2):43-61.
  • 8Xiao D M,Ruan S G.Global analysis of an epidemic model with nonmonotone incidence rate[J].Mathematical Biosciences,2007,208(2):419-429.
  • 9Hale J,Lunel S V.Introduction to functional differential equations[M].New York:Springer-Verlag,1993.
  • 10杨茂,王开发.一类非线性感染率病毒动力学模型分析[J].四川师范大学学报(自然科学版),2009,32(3):304-306. 被引量:18

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部