期刊文献+

一种改进Fisher准则的线性鉴别分析方法 被引量:5

Linear discriminant analysis based on improved Fisher criterion
下载PDF
导出
摘要 目前线性鉴别分析以Fisher准则或是逐对类加权Fisher准则为依据,但前者不能限制离群类,后者计算量大,鉴于此,提出一种改进Fisher准则用于线性鉴别分析。回顾了Fisher准则和逐对类加权Fisher准则,指出其中问题产生的根本原因。提出类距离和类离群程度的定义,以类距离为依据判定各类离群程度,以类离群程度为参数赋予各类权值,重新计算总体类均值和类间离散度矩阵,以得到限制离群类、突出常规类的改进Fisher准则。这种改进Fisher准则计算简单,能有效限制离群类。 Traditional linear discriminant analysis is based on Fisher criterion or weighted pairwise Fisher criterion. The former can’t restrain outlier classes, and the latter has high computation complexity, for that, a new improved Fisher criterion for linear discriminant analysis is presented. Fisher criterion and weighted pairwise Fisher criterion are reviewed. Reasons for their draw-backs are pointed out. Class distance and class outlier level are defined. Class outlier level is based on class distance. Each class is given weights for its outlier level, so as to re-estimate global mean vector and between-class scatter matrix, in order to get the new improved Fisher criterion which emphasizes less on outlier classes and more on normal classes. The improved Fisher criterion can restrain outlier classes without high computation complexity.
出处 《计算机工程与应用》 CSCD 2013年第3期210-212,221,共4页 Computer Engineering and Applications
关键词 线性鉴别分析 FISHER准则 离群类 人脸识别 linear discriminant analysis Fisher criterion outlier class face recognition
  • 相关文献

参考文献8

  • 1Jin Z,Yang J Y,Hu Z S,et al.Face recognition based on uncorrelated discriminant transformation[].Pattern Recognition.2001
  • 2JH Friedman.Regularized discriminant analysis[].Journal of the American Statistical Association.1989
  • 3Loog M,Duin R P W,Haeb-Umbach R.Multiclass linear dimension reduction by weighted pairwise fisher criteria[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2001
  • 4Zheng W,Zou C,Zhao L.Real-time face recognition using gram-Schmidt orthogonalization for LDA[].The Proceed-ings of theth International Conference on Pattern Recog-nition.2004
  • 5Lotlikar R,Kothari R.Fractional-step dimensionality reduction[].IEEE Transactions on Pattern Analysis and Machine Intelligence.2000
  • 6Cheong H P,Haesun P.A comparison of generalized linear discriminant analysis algorithms[].Pattern Recognition.2008
  • 7Chen LF,Liao HM,Ko MT,et al.A new LDA-based face recognition system which can solve the small sample size problem[].Pattern Recognition.2000
  • 8Yu H,Yang J.A direct LDA algorithm for highdimensional data with application to face recognition[].Pattern Recognition.2001

同被引文献39

  • 1罗森林,成华,顾毓清,张铁梅,曾平,陈峰.C4.5算法在2型糖尿病分类规则建立中的应用[J].计算机应用研究,2004,21(7):174-176. 被引量:15
  • 2黄利文,梁飞豹.改进的Fisher判别方法[J].福州大学学报(自然科学版),2006,34(4):473-477. 被引量:12
  • 3李建军,丁正生,张海燕.常用判别分类方法分析[J].西安科技大学学报,2007,27(1):138-142. 被引量:20
  • 4张尧庭.多元统计分析引论[M].北京:科学出版社,1999.35-46.
  • 5Zhang Wenchao, Shan Shiguang.Local Gabor Binary Pat- tern Histogram Sequence(LGBPHS):a novel non-statistical model for face representation and recognition[C]//Proceed- ings of 5th International Conference on Computer Vision, Beijing, China, 2005 : 786-791.
  • 6Yang Meng, Zhang Lei, Zhang Lin, et al.Monogenic Binary Pattern(MBP) :a novel feature extraction and representa- tion model for face recognition[C]//20th IEEE Interna- tional Conference on Pattern Recognition, 2010: 2680-2683.
  • 7Felsberg M.Optical flow estimation from monogenic phase[C]// Complex Motion.Berlin Heidelberg: Springer, 2007 : 1-13.
  • 8Alessandrini M, Bernard O, Basarab A, et al.Multiscale optical flow computation from the monogenic signal[J]. IRBM,2013,34( 1 ) : 33-37.
  • 9Xie Shufu, Shan Shiguang, Chen Xilin, et al.Fusing local patterns of gabor magnitude and phase for face recogni- tion[J].IEEE Transactions on Image Processing,2010, 19 (5) : 1349-1361.
  • 10Felsber G M, Sommer G.The monogenic signal[J].IEEE Transactions on Signal Processing, 2001,49 ( 12 ) : 3136-3144.

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部