期刊文献+

1-锗蒽、2-锗蒽及9-锗菲二聚反应的理论研究

Theoretical study on dimerization reactions of 1-germaanthracene,2-germaanthracene and 9-germaphenanthrene
下载PDF
导出
摘要 采用密度泛函B3LYP/6-311G**方法研究了1-锗蒽的[2+2]、[4+2]及[4+4]二聚反应、2-锗蒽及9-锗菲的[2+2]二聚反应的微观机理和势能剖面,考察了苯溶剂对反应势能剖面的影响,并与锗苯、1-锗萘及2-锗萘的类似反应进行了比较。计算结果表明,[2+2]和[4+4]反应为同步的协同过程,而[4+2]反应为非同步的协同过程。无论从热力学还是从动力学来看,1-锗蒽的[4+2]反应最有利,而[4+4]反应最不利。两种不同的进攻方式(endo进攻与exo进攻)在热力学和动力学上的差别不大。苯溶剂对所研究反应的势能剖面影响较小。1-锗蒽(2-锗蒽)的反应性高于锗苯和1-锗萘(2-锗萘)。 Density functional theory(DFT)-B3LYP/6-311G* * method was used to study the mechanism and potential energy sur- face of[ 2 +2 ], [ 4+2 ] and [ 4+4 ] dimerization reactions of 1-germaanthracene and [ 2 +2 ] dimerization reactions of 2-germaanthracene and 9-germaphenanthrene. The influence of benzene solvent on the potential energy surface of reactions was explored. The obtained results were compared with those of dimerization reactions of germabenzene, 1-germanaphthalene and 2-germanaphthalene studied previously. The results show that [ 2 +2 ] and [ 4 +4 ] reactions occur in a concerted and synchronous way, while [ 4 + 2 ] reactions pro- ceed in a concerted but nonsynchronous way. [ 4+2 ] Reactions of 1-germaanthracene are the most favorable beth thermodynamically and kinetically, while [ 4+4 ] reactions are the most unfavorable. It seems that the difference between exo and endo approaches is not obvious beth in the thermodynamic and kinetic properties. Benzene, as a poor polar solvent, has only trivial influence on the potential energy surface of the studied reactions. 1-Germaanthracene (2-germaanthracene)has higher reactivity than germabenzene and 1-ger- manaphthalene (2-germanaphthalene).
作者 王岩 王彦平
出处 《化学研究与应用》 CAS CSCD 北大核心 2013年第2期189-193,共5页 Chemical Research and Application
基金 河南省自然科学基金(092300410207)资助
关键词 1-锗蒽 2-锗蒽 9-锗菲 二聚反应 反应机理 密度泛函理论 1 -germaanthracene 2-germaanthraeene 9-germaphenanthrene dimerization reaction reaction mechanism DFI"
  • 相关文献

参考文献4

二级参考文献47

  • 1Barton T. J. , Bums G. T.. J. Am. Chem. Soe. [J], 1978, 100:5246-5246.
  • 2Schlegel H. B. , Coleman B. , Jones M.. J. Am. Chem. Soc. [J], 1978, 100:6499-6501.
  • 3Chandrasekhar J. , Schleyer P. R. , Baumgaertner R. O. , et al.. J. Org. Chem. [ J], 1983,48 : 3453-3457.
  • 4Wakita K. , Tokitoh N. , Okazaki R. , et al.. J. Am. Chem. Soc. [J], 2000, 122:5648-5649.
  • 5Wakita K. , Tokitoh N. , Okazaki R. , et al.. Angew. Chem. Int. Ed. [J], 2000, 39:634-636.
  • 6Tokitoh N.. Ace. Chem. Res. [J] , 2004, 37:86-94.
  • 7Santos J. C. , Fuentealba P.. Chem. Phys. Lett. [J], 2007, 443:439-442.
  • 8Markl G. , Rudnick D,. Tetrahedron Lett. [J], 1980, 21:1405-1408.
  • 9Markl G. , Rudnick D. , Schulz R.. Angew. Chem. Int. Ed. Engl. [J], 1982, 21:221-221.
  • 10Nakata N. , Takeda N. , Tokitoh N.. J. Am. Chem. Soc. [J], 2002, 124:6914-6920.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部