期刊文献+

基于组件协同的时空数据可视分析系统 被引量:5

A visual analysis system for spatiotemporal data based on components coordination
下载PDF
导出
摘要 设计实现基于组件的、多视图协同的可视分析系统,用于探索分析复杂的时空数据,挖掘其中隐藏的空间模式、时间模式及多维属性模式.系统以杭州房地产数据为例进行分析研究,该数据是一种典型的时空数据,包括楼盘的空间分布情况、均价和销量变化规律、楼盘属性相关性等复杂特性.系统以可视化的方式,提供了综合有效的、可交互的分析方法.系统开发实现4个核心可视分析组件:地图组件、平行坐标组件、时间序列组件和treemap组件.地图组件提供空间视图;平行坐标组件提供多维视图;时间序列组件提供时间视图;treemap组件提供综合视图.系统以一种可扩展、可定制的方式,实现各个组件之间高效的关联协同,从而大大提高了系统整体综合分析能力. In the paper, a component-based visual analysis system with multiple coordinaed views is presented. It is designed for exploring and analyzing complex spatiotemporal data, and mining hidden spatiotemporal and multivariate attributes patterns. Here, Hangzhou real estate dataset is taken as example data for analysis. This dataset is a typical spatiotemporal data, with characteristics of the spatial distribution of house, average price and sales variation pattern, the correlation of house attributes, etc.. This system provides an effective and interactive analysis method in visualization way. The four core visual analysis components are developed: GeoMap, Parallel Coordinate Plot (PCP), Time Series and Treemap. The GeoMap provides spatial view. The PCP provides multi-dimensional view. The TimeSeries provides temporal view and Treemap provides comprehensive view. The whole system is designed in a extensible, customizable way and various components are coordinated efficiently among each other. Thus the overall system comprehensive analysis capabilities will be improved greatly.
出处 《浙江工业大学学报》 CAS 2013年第1期96-105,共10页 Journal of Zhejiang University of Technology
基金 浙江省自然科学基金资助项目(Y1101043) 浙江省教育厅基金资助项目(Y201018240)
关键词 可视分析 时空数据 多视图协同 杭州房地产 : visual analytics spatiotemporal data multiple coordination views hangzhou real estate
  • 相关文献

参考文献25

  • 1KEIM D,ANDRIENKO G,FEKETE J D. Visual analytics:definition,process,and challenges[A].Beilin:Springer-Verlag,2008.154-175.
  • 2MACEACHREN A,KRAAK M. Research challenges ingeo visualization[J].Cartography and Geographic Information Systems,2001,(01):3-12.
  • 3KEIMD,KOHLHAMMERJ,ELLISG. Mastering the information age solving problems with visual analytics[M].Goslar:Eurographics Association,2010.
  • 4ANDRIENKO G,ANDRIENKO N,DEMSARB U. Space,time and visual analytics[J].International Journal of Geographical Information Science,2010,(10):1577-1600.
  • 5GUO Dian-sheng,CHEN Jin,MACEACHREN A. A visual inquiry system for space time and multivariate patterns ,(VIS-STAMP)[J].IEEE Transactions on Visualization and Computer Graphics,2006,(06):1461-1474.doi:10.1109/TVCG.2006.84.
  • 6TAKATSUKA M,GAHEGAN M. Geovista studio:a codeless visual programming environment for geoscientific data analysis and visualization[J].Computers & Geosciences,2002,(10):1131-1144.
  • 7HARDISTY F,ROBINSON A C. The geoviz toolkit:using component-oriented coordination methods for geographic visu alization and analysis[J].International Journal of Geographical Information Science,2011,(02):191-210.
  • 8GUO Han-qi,WANG Zu-chao,YU Bo wen. Tripvista:triple perspective visual trajectory analytics and its application on microscopic traffic data at a road intersection[A].USA:IEEEComputer Society Press,2011.163-170.
  • 9WOOD J,DYKES J,SLINGSBY A. Interactive visual exploration of a large spatio temporal dataset:reflections on a geovisualization mashup[J].IEEE Transactions on Visualization and Computer Graphics,2007,(06):1176-1183.
  • 10SLINGSBYA,DYKES J,WOODJ. Usingtreemaps for variable selection in spatio-temporal visualization[J].Informa tion Visualization,2008,(03):210-224.

同被引文献35

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部