期刊文献+

结合边缘纹理和抽样推断的自适应阴影检测算法 被引量:13

An Adaptive Shadow Detection Algorithm Using Edge Texture and Sampling Deduction
下载PDF
导出
摘要 为改进阴影检测的准确度和场景自适应能力,提高运动目标检测精度,设计了一种自适应的阴影检测算法。该算法利用候选前景与原始背景的Y、U、V分量变化比率来检测阴影像素,并结合全局边缘纹理特征及抽样推断方法来估计检测阈值。算法能自动完成阈值估计及阴影判别过程而无需人工干预,并可自动适应各种光线条件,具有较强的鲁棒性。对不同光线环境的标准视频检测实验表明,该算法在精度和实时性上均有所提升,阴影检测综合性能指标达到了94%以上。 An adaptive shadow detection algorithm is proposed to improve the accuracy and scene adaptive capacity of the shadow detection and to raise the effect of moving object detection.The change ratios of YUV components between candidate foreground and original background are used to detect shadow pixels,and the global edge texture and sampling deduction methods are employed to estimate the detection threshold values.The algorithm automatically complete the processes of both thresholds estimation and shadow discriminant without any manual intervention,so the algorithm is adaptive to different light conditions and has a strong robustness.Experiment results on standard videos with different lighting conditions show that both the accuracy and stability are raised by the proposed algorithm and the average comprehensive index of the proposed algorithm can reach more than 94%.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第2期39-46,共8页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61132008)
关键词 运动目标检测 阴影检测 YUV色彩空间 边缘纹理 自适应阈值 moving object detection shadow detect YUV color space edge texture adaptive thresholds
  • 相关文献

参考文献14

  • 1CANDAMO J,SHREVE M,GOLDGOF D B. Understanding transit scenes:a survey on human behavior-recognition algorithms[J].IEEE Transactions on Intelligent Transportation Systems,2010,(01):206-224.
  • 2SANIN A,SANDERSON C,LOVELL B C. Shadow detection:a survey and comparative evaluation of recent methods[J].Pattern Recognition,2012,(04):1684-1695.
  • 3HSIEH J W,HU W F,CHANG C J. Shadow elimination for effective moving object detection by Gaussian shadow modeling[J].Image and Vision Computing,2003,(06):505-516.doi:10.1016/S0262-8856(03)00030-1.
  • 4CUCCHIARA R,GRANA C,PICCARDI M. Detecting moving objects,ghosts,and shadows in video streams[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,(10):1337-1342.doi:10.1109/TPAMI.2003.1233909.
  • 5HUANG J B,CHEN C S. Moving cast shadow detection using physics-based features[A].Piscataway,NJ,USA:IEEE,2009.2310-2317.
  • 6LEONE A,DISTANTE C. Shadow detection for moving objects based on texture analysis[J].Pattern Recognition,2007,(04):1222-1233.doi:10.1016/j.patcog.2006.09.017.
  • 7SANIN A,SANDERSON C,LOVELL B C. Improved shadow removal for robust person tracking in surveillance scenarios[A].Piscataway,NJ,USA:IEEE,2010.141-144.
  • 8LEONE A,DISTANTE C. Shadow detection for moving objects based on texture analysis[J].Pattern Recognition,2007,(04):1222-1233.doi:10.1016/j.patcog.2006.09.017.
  • 9JOSHI A J,PAPANIKOLOPOULOS N P. Learning to detect moving shadows in dynamic environments[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,(11):2055-2063.
  • 10MARTEL-BRISSON N,ZACCARIN A. Kernel-based learning of cast shadows from a physical model of light sources and surfaces for low-level segmentation[A].Piscataway,NJ,USA:IEEE,2008.1-8.

二级参考文献14

  • 1Yoneyama A,Yeh C H,Kuo C C J.Moving cast shadow elimination for robust vehicle extraction based on 2D joint vehicle/shadow models[C]//Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance,Miami,FL,2003:229-236
  • 2Koller D,Danilidis K,Nagel H H.Model-based object tracking in monocular image sequences of road traffic scenes[J].International Journal of Computer Vision,1993,10(3):257-281
  • 3Cucchiara R,Grana C,Piccardi M,et al.Improving shadow suppression in moving object detection with HSV color information[C]//Proceedings of the Intelligent Transportation Systems Conference,Oakland,2001:334-339
  • 4Schreer O,Feldmann I,G(o)lz U,et al.Fast and robust shadow detection in videoconference applications[C]//Proceedings of the 4th EURASIP IEEE Region 8 Interational Symposium on Video//Image Processing and Multimedia Communications,Zadar,2002:371-375
  • 5Horprasert T,Harwood D,Davis L S A.A statistical approach for real-time robust background subtraction and shadow detection[C]//Proceedings of IEEE ICCV'99 Frame-Rate Workshop,Kerkyra,1999:1-19
  • 6Toth D,Stuke I,Wagner A,et al.Detection of moving shadows using mean shift clustering and a significance test[C]//Proceedings of the 17th International Conference on Pattern Recognition,Cambridge,2004:260-263
  • 7Chien S Y,Ma S Y,Chen L G.Efficient moving object segmentation algorithm using background registration technique[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(7):577-586
  • 8Xu Dong,Liu Jianzhuang,Li Xuelong,et al.Insignificant shadow detection for video segmentation[J].IEEE Transactions on Circuits and Systems for Video Technology,2005,15(8):1058-1064
  • 9Javed O,Shah M.Tracking and object classification for automated surveillance[C]//Proceedings of the 7th European Conference on Computer Vision,Copenhagen,2002:28-31
  • 10Leone A,Distante C,Buccolieri F.A texture-based approach for shadow detection[C]//Proceedings of the IEEE Conference on Advanced Video and Signal Based Surveillance,Miami,2003:371-376

共引文献23

同被引文献95

引证文献13

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部