摘要
针对超声心动图噪声很大、提取目标区域边界不够平滑完整的问题,将非参数技术与水平集相结合,提出了多尺度非参数化的水平集图像分割方法。利用非局域均值滤波建立尺度空间,保护图像特征,在粗尺度预分割,然后在细尺度优化分割。采用Parzen窗技术对超声心动图的亮度分布进行统计建模,不需要先验假设,引入到水平集框架中,设计了非参数化水平集分割模型。分割实验证明:预分割结果和真实边界的平均绝对距离为2.162,优化后为0.710。该方法可以精确地自动提取感兴趣区域,在图像分割鲁棒性和精确性方面优于常规分割方法。
To solve difficulty that the boundary of segmented objective region is not enough smooth and complete due to ultrasound echocardiography with serious noise,a multiscale segmentation approach combined non-parametric technique with level set,is presented.The nonlocal means filtering(NLM) is performed to create scale space and preserve image features.Pre-segmentation is firstly carried out in a coarser scale image,then an optimized segmentation in a finer scale image,the intensity distribution of the ultrasound echo images is modeled by Parzen window technique without prior assumption.A non-parametric model on level set framework is designed to segment the ultrasound echocardiography.The segmentation experiments show that the mean absolute distance(MAD) between real boundary and pre-segmentation result gets to 2.162,but,and the optimized result only 0.710.The approach outperforms the conventional segmentation methods by accurately and automatically extracting the regions of interest.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2013年第2期53-57,96,共6页
Journal of Xi'an Jiaotong University
基金
国家自然科学基金资助项目(81000635)
关键词
图像分割
非局域均值滤波
水平集
非参数化
image segmentation
nonlocal means filtering
level set
non-parametric