期刊文献+

多尺度非参数化水平集的超声心动图分割 被引量:2

Multiscale Non-Parametric Level Set Segmentation of Ultrasound Echocardiography
下载PDF
导出
摘要 针对超声心动图噪声很大、提取目标区域边界不够平滑完整的问题,将非参数技术与水平集相结合,提出了多尺度非参数化的水平集图像分割方法。利用非局域均值滤波建立尺度空间,保护图像特征,在粗尺度预分割,然后在细尺度优化分割。采用Parzen窗技术对超声心动图的亮度分布进行统计建模,不需要先验假设,引入到水平集框架中,设计了非参数化水平集分割模型。分割实验证明:预分割结果和真实边界的平均绝对距离为2.162,优化后为0.710。该方法可以精确地自动提取感兴趣区域,在图像分割鲁棒性和精确性方面优于常规分割方法。 To solve difficulty that the boundary of segmented objective region is not enough smooth and complete due to ultrasound echocardiography with serious noise,a multiscale segmentation approach combined non-parametric technique with level set,is presented.The nonlocal means filtering(NLM) is performed to create scale space and preserve image features.Pre-segmentation is firstly carried out in a coarser scale image,then an optimized segmentation in a finer scale image,the intensity distribution of the ultrasound echo images is modeled by Parzen window technique without prior assumption.A non-parametric model on level set framework is designed to segment the ultrasound echocardiography.The segmentation experiments show that the mean absolute distance(MAD) between real boundary and pre-segmentation result gets to 2.162,but,and the optimized result only 0.710.The approach outperforms the conventional segmentation methods by accurately and automatically extracting the regions of interest.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第2期53-57,96,共6页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(81000635)
关键词 图像分割 非局域均值滤波 水平集 非参数化 image segmentation nonlocal means filtering level set non-parametric
  • 相关文献

参考文献14

  • 1XIAO G,BRADY M,NOBLE J A. Segmentation of ultrasound B-mode images with intensity in homogeneity correction[J].IEEE Transactions on Medical Imaging,2002,(01):48-57.
  • 2LIU Jiamin,JAYARAM K U. Oriented active shape models[J].IEEE Transactions on Medical Imaging,2009,(04):571-584.
  • 3CHANT F. Active contours without edges[J].IEEE Transactions on Image Processing,2001,(02):266-277.
  • 4PARAGIOS N,MELLINA-GOTTARDO O,RAMESH V. Gradient vector flow fast geometric active contours[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,(03):402-407.doi:10.1109/TPAMI.2004.1262337.
  • 5PARAGIOS N. A level set approach for shape-driven segmentation and tracking of the left ventricle[J].IEEE Transactions on Image Processing,2003,(06):773-776.
  • 6LIN N,YU W,DUNCAN J S. Combinative multi-scale level set framework for echocardiographic image segmentation[J].Medical Image Analysis,2003,(04):529-537.
  • 7CARDINAL M H R,MEUNIER J,SOULEZ G. Intravascular ultrasound image segmentation:a three-dimensional fast-marching method based on gray level distributions[J].IEEE Transactions on Medical Imaging,2006,(05):590-601.
  • 8ALESSANDRO S,CRISTIANA C,ELENA M. Maximum likelihood segmentation of ultrasound images with Rayleigh distribution[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2005,(06):947-960.
  • 9COUPE P,HELLIER P,KERVRANN C. Nonlocal means-based speckle filtering for ultrasound images[J].IEEE Transactions on Image Processing,2009,(10):2221-2229.
  • 10HAME Y,POLLARI M. Semi-automatic liver tumor segmentation with hidden markov measure field model and non-parametric distribution estimation[J].Medical Image Analysis,2012,(01):140-149.

同被引文献54

  • 1郭礼华,李建华,袁小彤,杨树堂.基于高斯矢量场的多尺度水平集图像分割算法[J].上海交通大学学报,2005,39(S1):129-133. 被引量:4
  • 2秦安,冯前进,陈武凡.小波多尺度水平集算法与心脏超声图像鲁棒分割[J].计算机工程与应用,2006,42(30):208-211. 被引量:5
  • 3于慧敏,徐艺,刘继忠,高晓颖.基于水平集的多运动目标时空分割与跟踪[J].中国图象图形学报,2007,12(7):1218-1223. 被引量:8
  • 4余瑞星,李言俊,张科.基于小波变换的多尺度水平集算法研究[J].光子学报,2007,36(2):372-375. 被引量:6
  • 5KASS M,WITKIN A,TERZOPOULOS D. Snakes:Active contour models[J].International Journal of Computer Vision,1988,(04):321-331.
  • 6OSHER S,SETHIAN J A. Fronts propagating with curvature-dependent speed:Algorithms based on Hamilton-Jacobi formulations[J].Journal of Computational Physics,1988,(01):12-49.
  • 7CASELLES V,KIMMEL R,SAPIRO G. Geodesic active contours[J].International Journal of Computer Vision,1997,(01):61-79.
  • 8MUMFORD D,SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[J].Communications on Pure and Applied Mathematics,1989,(05):577-685.
  • 9CHAN T F,VESE L A. Active contours without edges[J].IEEE Transactions on Image Processing,2001,(02):266-277.
  • 10PARAGIOS N,DERICHE R. Geodesic active regions and level set methods for supervised texture segmentation[J].International Journal of Computer Vision,2002,(03):223-247.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部