期刊文献+

周界监测中的阈值优化和多模态节点协同检测算法 被引量:1

A New Optimization Method for Thresholds and Collaborative Targets Detection in Perimeter Monitoring
下载PDF
导出
摘要 为提高无线传感器网络周界监测中多节点的目标协同检测能力,提出了一种新的阈值优化方法及多模态节点协同检测算法。首先,在一定的环境噪声下,采用蒙特卡罗方法建立节点虚警率与节点阈值之间、系统虚警率与系统阈值和节点虚警率之间的映射关系,通过查表直接获取阈值,实现了节点和系统阈值优化;然后,利用节点的空间分布特性和目标信号信噪比,对节点检测结果进行加权修正,实现了多模态节点的检测结果融合;最后,通过仿真实验对阈值优化方法和多模态节点协同检测算法进行了验证。仿真结果显示,相对于单模态节点协同检测算法和简单阈值判决算法,多模态节点协同检测算法的目标检测率分别提高了约25%和3%。 A new optimization method for thresholds and a multi-modal nodes collaborative detecting algorithm are proposed to improve the target detection capability of perimeter monitoring in wireless sensor networks.The optimization of the node and the system thresholds is realized by using the Monte Carlo method to create the mapping table between the node false alarm rates and the node thresholds,as well as the mapping table among the system false alarm rates,the node false alarm rates and system thresholds.Then,the optimal node and system thresholds are obtained by looking up the mapping tables.The results of the multi-modal nodes collaborative detecting is fuzed by using the distributed characteristics of nodes and target signal-to-noise ratio to revise the weighting of the node detecting results.Simulation experiments and comparisons with the single-modal node collaborative detecting algorithm and the simple thresholds detecting algorithm show that the multi-modal nodes collaborative detecting algorithm increases the target detection rate by about 25% and 3%,respectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第2期75-80,共6页 Journal of Xi'an Jiaotong University
基金 国家重点基础研究发展计划资助项目(2011CB302901) 江苏省自然科学基金资助项目(BK2011035)
关键词 无线传感器网络 周界监测 阈值优化 协同检测 wireless sensor networks perimeter monitoring thresholds optimization collaborative detection
  • 相关文献

参考文献10

  • 1CLOUQUEUR T,PHIPATANASUPHORN V,RA-MANATHAN P,et al.Sensor deployment strategyfor detection of targets traversing a region[J].MobileNetworks and Applications,2003,8(4):453-461.
  • 2TENNEY R R,SANDELL N R.Detection with dis-tributed sensors[J].IEEE Transactions on Aerospaceand Electronic Systems,1981,17(4):501-510.
  • 3CHAIR Z,VARSHNEY P K.Optimal data fusion inmultiple sensor detection systems[J].IEEE Transac-tions on Aerospace and Electronic Systems,1986,22(1):98-101.
  • 4VISWANATHAN R,VARSHNEY P K.Distributeddetection with multiple sensors:I fundamentals[J].Proceedings of the IEEE,1997,85(1):54-63.
  • 5NIU Ruixin,VARSHNEY P K,CHENG Qi.Distrib-uted detection in a large wireless sensor network[J].Information Fusion,2006,7(4):380-394.
  • 6KATENKA N,LEVINA E,MICHAILIDIS G.Localvote decision fusion for target detection in wirelesssensor networks[J].IEEE Transactions on SignalProcessing,2008,56(1):329-338.
  • 7KIEU-XUAN T,KOO I.A collaborative event detec-tion scheme using fuzzy logic in clustered wireless sen-sor networks[J].International Journal of Electronicsand Communications,2011,65(5):485-488.
  • 8WANG Yun,LUN Zhengdong.Intrusion detection inak-Gaussian distributed wireless sensor network[J].Journal of Parallel and Distributed Computing,2011,71(12):1598-1607.
  • 9张彦航,苏小红,马培军.基于最大置信度的多目标检测算法[J].信号处理,2012,28(1):39-46. 被引量:3
  • 10赵振宇,徐玉清,沈晓强,朱小文.高效混合式协同检测方法研究[J].无线电通信技术,2011,37(6):55-57. 被引量:1

二级参考文献17

  • 1孔敏,王国宏.利用幅值信息的超视距雷达多路径概率数据互联算法[J].海军航空工程学院学报,2007,22(4):421-425. 被引量:2
  • 2曲长文,黄勇,苏峰.基于动态规划的多目标检测前跟踪算法[J].电子学报,2006,34(12):2138-2141. 被引量:27
  • 3Federal Communications Commission. Spectrum Policy Task Force Report [R]//ET Docket No. 02- 135,Nov.2002.
  • 4IlIJ M, MAGUIRE G Q. Cognitive radio: Making software radios more personal [ J ] . IEEE Personal Communications, 1999,6(4) : 13 - 18.
  • 5MISHRAS M, SAHAI A, BRODERSON R W. Cooperative sensing among cognitive radios [ C ]// Proceedings of IEEE International Conference on Communication, 2006(4) : 1658 - 1663.
  • 6BARLATM. Signal Detection and Estimation (2rid edition) [ M ] . Boston, MA : Artech House, Inc, 2005.
  • 7GHOSHM, GADDAM V, TURKENICH G, et al. Spectrum Sensing Prototype for Sensing ATSC and Wireless Microphone Signals [ C ] ff Cognitive Radio Oriented Wireless Networks and Communications, 2008. 3rd International Conference on. May 15 - 17,2008:1 - 7.
  • 8Cai J,Sinha A,Kirubarajan T.EM-ML algorithm for track initialization using possibly noninformative data[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005,41(3):1030-1047.
  • 9Johnston L.A.,Krishnamurthy V.Performance analysis of a dynamic programming track before detect algorithm [J].IEEE Transactions on Aerospace and Electronic Systems,2002,38(1):228-242.
  • 10Buzzi S,Lops M,Venturino L,Ferri M.Detection of an unknown number of targets via track-before-detect procedures [C],IEEE National Radar Conference,Waltham, MA,United states,2007,180-185.

共引文献2

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部