期刊文献+

一种半监督稀疏保持近邻判别嵌入算法

Semi-supervised Sparse Neighborhood Preserving Discriminant Embedding Algorithm
下载PDF
导出
摘要 保持近邻嵌入(NPE)算法对局部线性嵌入(LLE)算法进行了改进,克服了新来样本问题,但在处理分类问题上表现不足。基于此提出一种半监督稀疏保持近邻判别嵌入算法,该方法首先采用小波变换对数据进行预处理,然后执行等距离映射(Isomap)算法选择合适的低维嵌入维数,最后结合稀疏表示理论、NPE和线性判别分析(LDA)的思想,重构邻域图,并在建立目标函数时使得已标签信息中同类样本点之间相互靠近,异类样本点之间相互远离,未标签信息邻域信息得以保持。这样,既得到了高维映射函数,又提高了分类正确率。通过在人脸数据库上实验,并与其他半监督算法作比较,该算法在识别率上表现较好。 Neighborhood preserving embedding( NPE )algorithm is improved on Locally Linear Embedding (LLE)algorithm, and it overcomes the new coming sample problem,but it is not good in dealing with the classification. A semi-supervised sparse neighborhood preserving diseriminant embedding algorithm is presented,the method preprocesses the data by using the wavelet transform, and then it performs Isomap algorithm to select the appropriate low-dimensional embedding dimension,and the last it reconstructs the neighborhood graph which is based on the theroy of sparse representations, NPE and linear diseriminant analysis(LDA) , at the same times, it makes closer between the same class points and away from each other between different class points which have been labeled, maintains the information of points which have been unlabeled. So the new algorithm has both got the high-dimensional mapping function, and it improves the classification accuracy. Experiments on face databases, comparing with other semi-supervised algorithms, the pro- posed algorithm performes better on the recognition rate.
出处 《电视技术》 北大核心 2013年第3期47-51,共5页 Video Engineering
基金 徐州市科技计划项目(XX10A001)
关键词 保持近邻嵌入 稀疏表示 线性判别分析 半监督 NPE sparse representation LDA semi-supervised
  • 相关文献

参考文献11

二级参考文献63

  • 1鲁珂,赵继东,叶娅兰,曾家智.一种用于图像检索的新型半监督学习算法[J].电子科技大学学报,2005,34(5):669-671. 被引量:9
  • 2祝磊,朱善安.KSLPP:新的人脸识别算法[J].浙江大学学报(工学版),2007,41(7):1066-1069. 被引量:11
  • 3冈萨雷斯.数字图像处理[M].2版.北京:电子工业出版社,2006.
  • 4[1]Ziquan Hong.Algebraic feature extraction of image for recognition.Pattern Recognition,1991,24 (3):211-219.
  • 5[2]Belhumeur P N,Hespanha J P,Kriegman D J.Eigenfaces vs Fisherface:Recognition using class special linear projection.IEEE Transactions on Pattern Analysis and Machine intelligence,1997,19 (7):711-720.
  • 6[3]Lades M,Vorbuggen J,Buhman J,et al.Distortion invariant object recognition in the dynamic link architecture.IEEE Trans.on Computers,1991,42(3):300-311.
  • 7[4]Samaria F,Young S.HMM-based architecture for face identification.Image and Vision Computing,1994,12(8):537-743.
  • 8[5]Jun Zhang,Yong Yan,M artin L ades.Face recognition:Eigenface,Elastic Matching,and Neural Nets.Proceedings of the IEEE,1998,85 (9):1422-1435.
  • 9[6]R.M.Rao,A.S.Bopardikar,WAVELET TRANSFORM.July 1998.
  • 10[7]C.Liu,H.Wechsler,Enhanced Fisher Linear Discriminant Models for Face Recognition,Pattern Recognition,1998,vol.2:1368-1372.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部