期刊文献+

耦合Burgers系统和Burgers方程的多孤子解(英文) 被引量:1

Multi-soliton Solutions of the Coupled Burgers System and the Burgers Equation
下载PDF
导出
摘要 达布阵是构造非线性演化方程精确解的有效方法,本文应用该方法构造了一个耦合Burgers系统的达布变换和多孤子解,并利用约化技巧得到了Burgers方程的达布变换和多孤子解.通过画图给出这些多孤子解的图形. Darboux matrix, a comprehensive approach to construct the explicit solutions of the nonlinear evolutionary equation, is applied to construct a Darboux transformation and multi-soliton solutions of the coupled Burgers system. Moreover,a Darboux transformation and multi-soliton solutions of the Burgers equation are obtained by the reduction technique. In particular, multiple soliton solutions are shown through some figures.
作者 扎其劳
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期1-6,共6页 Journal of Inner Mongolia University:Natural Science Edition
基金 Supported by the National Natural Science Foundation of China(Grant No 11261037) the High Education Science Research Program of China(Grant No 211034) the Caoyuan Yingcai Program the High Education Science Research Program of Inner Mongolia Autonomous Region(Grant No NJ10045)~~
关键词 达布阵 孤子解 BURGERS方程 Darboux matrix soliton solution Burgers equation
  • 相关文献

参考文献2

二级参考文献77

  • 1Griffiths P and Harris J 1994 Principles of Algebraic Geometry (New York: Wiley).
  • 2Dickey L A 1991 Soliton Equations and Hamiltonian Systems (Singapore: World Scientific).
  • 3Hon Y C and Fan E G 2005 J. Math. Phys. 46 032701.
  • 4Kovalevski S 1889 Acta. Math. 12 177.
  • 5Knorrer H 1980 Invent. Math. 59 119.
  • 6Jacobi C 1984 Vorlesungen uber Dynamik Gesammelte Werke (Berlin: Supplementband).
  • 7Calogero F 1975 Lett. Nuovo Cimento 13 411.
  • 8Moser J 1975 Adv. Math. 16 197.
  • 9Moser J 1986 Integrable Hamiltonian System and Spectral Theory Proc. Symp. on Differential Geometry and Differential Equations (Beijing: Science Press) 157.
  • 10Flascka H 1983 in: Non-linear Integrable System-Classical Theory and Quantum Theory, 1981 Proceedings of RIMS Symposium Kyoto, Japan (Singapore: World Scientific).

共引文献2

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部