期刊文献+

拓扑线性空间中带有W-距离的不动点定理

A Fixed Point Theorem with W-distance in Topological Vector Spaces
下载PDF
导出
摘要 给出拓扑线性空间W-距离的一些性质及例子.在拓扑线性空间中建立了一个压缩不动点定理,其压缩条件中含有W-距离. Some properties and examples of W-distance in topological vector spaces are given. Moreover,a contraction fixed point theorem in topological vector spaces is established, where the contractive condition contains W-distance.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期12-15,共4页 Journal of Inner Mongolia University:Natural Science Edition
基金 内蒙古大学高层次人才引进科研项目(30105-125150)
关键词 不动点定理 拓扑线性空间 W-距离 fixed point theorem topological vector space W-distance
  • 相关文献

参考文献7

  • 1贺飞,丘京辉.拓扑向量空间中的W-距离和向量值Ekeland变分原理(英文)[J].苏州大学学报(自然科学版),2010,26(2):30-34. 被引量:1
  • 2Taylor A E,Lay D C.Introduction to Functional Analysis[]..1980
  • 3Ciric LB.A generalization of Banach’s contraction principle[].Proceedings of the American Mathematical Society.1974
  • 4KM Das,KV Naik.Common fixed point theorems for commuting maps on metric spaces[].Proceedings of the American Mathematical Society.1979
  • 5Jankovic S,Kadelburg Z,Radenovic S.On cone metric spaces:A survey[].Nonlinear Analysis.2011
  • 6Ilic D,Rakocevic V.common fixed points for maps on metric space with w-distance[].Journal of Applied Mathematics.2008
  • 7Kada O,Suzuki T,Takahashi W.Nonconvx minimization theorems and fixed point theorems in complete metric spaces[].Japanese Journal of Mathematics.1996

二级参考文献6

  • 1Ekeland I.Sur les probemes variationnels[J].C R Acad Sci Paris,1972,275:1057-4059.
  • 2Araya Y.Ekeland's variational principle and its equivalent theorems in vector optimization[J].J Math Anal Appl,2008,346:9-16.
  • 3Qiu J H.Ekeland's variational principle in Fréchet spaces and the density of extremal points[J].Studia Math,2005,168:81-94.
  • 4Kada O,Suzuki T,Takahashi W.Nonconvx minimization theorems and fixed point theorems in complete metric spaces[J].Math Japon,1996,44:381-391.
  • 5Lin L J,Du W S.Some equivalent formulations of the generalized Ekeland's variationa principle and their applications[J].Nonlinear Anal,2007,67:187-199.
  • 6Gopfert A,Riahi H,Tammer C,et al.Variational methods in partially ordered spaces[M].New York:Springer-Verlag,2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部