期刊文献+

基于黄金分割法的ISODATA算法的大样本特征数据提取方法 被引量:2

A Method for Characteristic Extraction from Large Sample Data Based on the Golden Section Method's ISODATA Algorithm
下载PDF
导出
摘要 如何从样本量大、数据结构复杂、离散度大的样本数据中提取有效的特征数据是模式识别的重点和难点,而ISODATA算法是处理大样本数据聚类的常用算法之一,其不足之处是需要预先确定初始聚类参数.提出了基于黄金分割法来度量聚类的有效性,该方法能动态计算聚类度量参数,可实现大样本数据的有效聚类.实验证明,该方法能够从原始特征中挑选出最有代表性、分类性能最好的特征. How to extract effective feature data from large samples, complex structures and dis persion data is the key and difficulty of the pattern recognition,the ISODATA algorithm is one of the common algorithm of large samples data clustering, whereas the inadequacies of the algorithm are need to predetermine initial cluster parameters. An improved method based on the golden sec tion method is proposed to measure the effectiveness of clustering, which can dynamically calculate the clustering metrics, and achieve effective clustering of large sample data. The results show that the method can select the most representative and best characteristic features from the original large sample data.
出处 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期93-96,共4页 Journal of Inner Mongolia University:Natural Science Edition
基金 国家自然科学基金资助项目(50901039)
关键词 ISODATA 大样本 黄金分割法 特征提取 ISODATA large sample data golden section method characteristics extraction
  • 相关文献

参考文献4

二级参考文献21

  • 1王汉芝,刘振全.一种新的确定K-均值算法初始聚类中心的方法[J].天津科技大学学报,2005,20(4):76-79. 被引量:9
  • 2朱学锋,韩荣阁,杨若红.基于模糊预测系统的观测数据野值剔除方法[J].系统工程与电子技术,2006,28(3):478-482. 被引量:9
  • 3Mac Queen J. Some Methods for Classification and Analysis of Multivariate Observations[J]. Proceeding of the 5th Berkeley Symposium on Mathematics Statistic Problem, 1967, (1).
  • 4Huang Z. Extensions to The K-means Algorithm for Clustering Large Data Set with Categorical Values [J]. Data Mining and Knowledge Discovery,1998,(2).
  • 5Dubes R C,Jain A K.Validity Studies in Clustering Methodologies[J]. Pattern Recognition, 1979, 12(11).
  • 6Siddheswar Ray, Rose H. Tuff. Determination of Number of Clusters in K-Means Clustering and Application in Color Image Segmentation[J]. ICAPRDT'99, Calcutta,India,1999,(12).
  • 7Tsunenori Ishioka. Extended K-means with an Efficient Estimation of the Number of Clusters[J]. Proceedings of the Second International Conference on Intelligent Data Engineering and Automated Learning (IDEAL 2000), Hong Kong, China, 2000.
  • 8Pal N R and J. C. Bezdek. On Cluster Validity for the Fuzzy cmeans Model[J]. IEEE Transaction on Fuzzy Systems,1995.
  • 9Moguerza J M, Munoz A, Martin-Merino M. Detecting the Number of Clusters Using a Support Vector Machine Approach[J]. International Conference on Artificial Neural Networks-ICANN,2002.
  • 10黄怀德.振动工程(上)[M].北京:中国宇航出版社,1993.

共引文献63

同被引文献23

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部