期刊文献+

放电等离子烧结-热变形技术制备NdFeB永磁材料 被引量:3

NdFeB Magnets Prepared by Spark Plasma Sintering and Hot Deformation
原文传递
导出
摘要 采用放电等离子烧结(SPS)方法烧结HDDRNdFeB粉末,研究烧结温度对制备NdFeB永磁材料密度和磁性能的影响。随着烧结温度在650~900℃范围内升高,剩磁、内禀矫顽力及最大磁能积均呈现先升后降的趋势。800℃烧结所获得磁体的磁性能最佳:Br=0.78T,Hcj=577kA/m,(BH)max=78kJ/m3,其致密度达到了99%。微观组织、XRD图谱及磁性能均表明800℃烧结的磁体出现了一定程度的各向异性。900℃烧结时,晶粒长大明显。进而选择具有最佳磁性能的磁体在800℃进行热变形(HD)处理,制备出各向异性磁体。热变形制备的磁体中,大部分晶粒为扁平片状且c轴取向与热压方向一致;少量异常长大晶粒会使细小Nd2Fe14B晶粒的c轴偏离压力方向。各向异性磁体沿c轴的磁性能为:Br=1.09T,Hcj=384kA/m,(BH)max=114kJ/m3。 The effects of sintering temperature (Tsps) on the magnetic properties and density of NdFeB magnets prepared by spark plasma sintering (SPS) from HDDR powders were studied. With increasing the sintering temperature in the range of 650-900 ~C, the remanence (Be), intrinsic coercivity (Hcj) and maximum energy product ((BH)max) all increased first and then decreased. The optimum magnetic properties ofBr = 0.78 T, Hcj = 577 kA/m and (BH)max = 78 kJ/m3 were obtained in the samples SPSed at 800℃ and the density reached 99% of the theoretical. The microstructure, XRD patterns and magnetic properties indicated that the sample (Tsps = 800 ℃) was anisotropic to a certain degree. But the grain growth was obvious when the Tsps reached 900℃. The SPSed magnet with optimal magnetic properties was subjected to hot deformation at 800 ℃ and an anisotropic magnet was obtained. The hot deformation made the Nd2Fe14B grain orient in such a way that the c-axis of the Nd2Fe14B grain was parallel to the pressing direction. However, the alignment of grains was disrupted by a small amount of abnormal large grains. The magnetic properties parallel to the c-axis of the SPSed + HDed magnet were as follows: Br = 1.09 T, Hcj = 384 kA/m, and (B/-/)max = 114 kJ/m3.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第1期194-199,共6页 Rare Metal Materials and Engineering
基金 新世纪优秀人才支持计划项目(NCET-10-0364) 教育部重点实验室培育项目(x2jq-C1090040) 中央高校基本科研业务费专项资金资助重点项目(2009ZZ0019)
关键词 放电等离子烧结 热变形 NDFEB HDDR 各向同性 各向异性 spark plasma sintering hot deformation Nd-Fe-B HDDR anisotropy and isotropy
  • 相关文献

参考文献10

  • 1Sagawa M;Fujimura S;Togawa N.查看详情[J],Journal of Applied Physics1984(06):2083.
  • 2Mishra Raja K;Panchanathan V;Croat John J.查看详情[J],Journal of Applied Physics1993(10):6470.
  • 3Yue M;Tian M;Zhang J X.查看详情[J],Materials Science and Engineering B200618.
  • 4Song Xiaoyan;Zhang Jiuxing;Yue Ming.查看详情[J],Advanced Materials20061210.
  • 5Yamashita Fumitoshi;Hashimoto Sunao;Sasaki Yuichiro.查看详情[J],IEEE Transactions on Magnetics1999(05):3304.
  • 6Suresh K;Ohkubo T;Takahashi Y K.查看详情[J],Journal of Magnetism and Magnetic Materials20093681.
  • 7Liu W Q;Cui Z Z;Yi X F.查看详情[J],Journal of Applied Physics201009A719.
  • 8石刚,胡连喜,王尔德.机械球磨与HDDR结合制备纳米晶Nd_(12)Fe_(82)B_6合金粉末及其组织特征[J].稀有金属材料与工程,2006,35(4):609-612. 被引量:9
  • 9Gutfleisch O;Harris I R.查看详情[J],Journal of Physics D:Applied Physics,19962255.
  • 10Liu Z W;Huang H Y;Gao X X.查看详情[J],Journal of Physics D:Applied Physics,2011025003.

二级参考文献14

  • 1[1]Skomski R,Coey J M D.Phys Rev B[J],1993,48:15 812
  • 2[2]Coey J M D.Journal of Alloy and Compounds[J],2001,326:2
  • 3[3]Gutfleisch O,Bollero A,Handstein A et al.J Magn Magn Mater[J],2002,242~245:1277
  • 4[4]Manaf A,Buckley R A,Davis H A.J Magn Magn Mater[J],1993,128(3):302
  • 5[5]Kramer M J,Lewis L H,Fabietti L M et al.J Magn Magn Mater[J],2002,241:144
  • 6[6]Miao W F,Ding J,McCormick P G et al.Journal of Alloys and Compounds[J],1996,240:200
  • 7[7]Neu V,Crespo P,Schafer R et al.J Magn Magn Mater[J],1996,157/158:61
  • 8[8]Harris I R,McGuiness P J.Journal of the Less-Common Metals[J],1991,174:1273
  • 9[9]Jurczyk M,Jakubowicz J,Gebel B et al.Journal of Alloys and Compounds[J],1999,292:296
  • 10[10]Hu Lianxi,Shi Gang,Wang Erde.Transactions of Nonferrous Metals Society of China[J],2003,13(5):1070

共引文献8

同被引文献37

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部