期刊文献+

改进的高斯背景建模在车辆检测中的应用

Improved Gaussian background modeling in the vehicle detection apply
下载PDF
导出
摘要 研究实时环境下运动车辆的检测算法,针对存在渐变及重复性运动的车辆运动背景采用改进的高斯背景建模法,对背景进行更新,将所得的当前背景与前一帧视频图像进行相减,得到当前时刻车辆的运动图像。将所得图像进行数学形态学去噪处理得到较为理想的车辆检测效果图,并根据处理后的图像判断车辆是否运动以及其运动轨迹。实验证明该方法能去除噪声对图像产生的影响,对判断某一时刻车辆是否运动行之有效。 Research real-time environment movement vehicle detection algorithm, Based on the existing gradient and repetitive motion of the vehicle movement background of the improved gaussian background modeling method, To update the background,the income of the current background and the previous frame video image subtraction, get the current moment of the vehicle motion image . Will the mathematical morphology image denoising processing get more ideal of vehicle detection rendering, And according to the processed images judgment whether the vehicle motion and its trajectory and the processed image according to judge whether the vehicle motion and its trajectory. Experiments show this method can remove noise on the effects of image,to judge whether a moment vehicle movement effective.
作者 李鸿 熊金艳
出处 《电子测试》 2013年第1期23-25,共3页 Electronic Test
关键词 改进的高斯背景建模 车辆检测 数学形态学 improved Gaussian background modeling,vehicle detection,mathematical morphology
  • 相关文献

参考文献6

二级参考文献28

  • 1杨文国,李刚,蔡慧华.一种基于高斯混合模型的MR图像分割[J].微计算机信息,2008,24(6):310-312. 被引量:10
  • 2STAUFFER C, GRIMSON WEL. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence. 2000, 22(8): 747-57.
  • 3KAEWTRAKULPONG P, BOWEN R. An improved adaptive background mixture model for real time tracking with shadow detection: Proc. of 2nd European workshop on advanced video based surveillance systems[C]. 2001.
  • 4CHRISTOPHE B. Initializing EM using the properties of its trajectories in Gaussian mixtures module[J]. Statistics and Computing, 2004,14,3:267-279.
  • 5[1]M Sonka,V Hlavac,R Boyle.Image Processing,Analysis,and Machine Vision[M].2nd ed.California:Brooks/Cole Publishing Company,1999.
  • 6[2]W Hu,T Tan,L Wang,et al.A survey on visual surveillance of object Motion and behaviors[J].IEEE Trans.Systems,Man,and Cybernetics-Part C:Applications and Reviews,2004,34(3):334-352.
  • 7[3]Y Bar-Sholam,T Fortmann.Tracking and data association[M].Orlano:Academic Press,1988.
  • 8[4]Y Bar-Shalom,X Li.Multitarget Multisensor Tracking:Principles and Applications[M].Storrs:YBS Publishing,1995.
  • 9[5]T J Broida,S Chandra,R Challappa.Recursive 3D motion estimation from a monocular image sequences[J].IEEE Trans.Aerosp.Electron.Syst.,1990,26(4):639-656.
  • 10[6]Z Mazor,A Averbuch,Y Bar-Shalom,et al.Interacting multiple model methods in target tracking:a Survey[J].IEEE Trans.Aerosp.Electron.Syst.,1998,34(1):639-656.

共引文献142

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部