期刊文献+

Chaos and null systems 被引量:2

Chaos and null systems
原文传递
导出
摘要 A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic. A dynamical system is called a null system, if the topological sequence entropy along any strictly increasing sequence of non-negative integers is 0. Let 0≦p≦q≦1. A dynamical system is Dqp chaotic, if there is an uncountable subset in which any two different points have trajectory approaching time set with lower density p and upper density q. In this paper, we show that there is a null system which is also D3/41/4 chaotic.
出处 《Science China Mathematics》 SCIE 2013年第3期607-618,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant No.11071084) Natural Science Foundation of Guangdong Province (Grant No. 10451063101006332)
关键词 null system Dpq chaos topological sequence entropy 动力系统 混沌 非负整数序列 拓扑序列 DQP 不可数 密度 子集
  • 相关文献

参考文献1

二级参考文献12

  • 1Liao,G .F.Anoteonachaoticmapwithtopologicalentropy0. NortheasternMathematicalJournal . 1986
  • 2Misurewicz,M,Sm姫tal,J.SmoothchaoticmapswithzerotopologicalentropyErgTh&DynSys,1988.
  • 3Zhou,Z .L,Liao,G .F,Wang,L .Y.Thepositivetopologicalentropynotequivalenttochaos———aclassofsubshifts. ScienceinChina,SerA . 1994
  • 4Erd s,P,Stone,A .H.Orbit closuredecompositionsandalmostperiodicproperties. Bulletin of the American Mathematical Society . 1945
  • 5Schweizer B,Smital J.Measures of chaos and a spectral decomposition of dynamical systems on the interval. Transactions of the American Mathematical Society . 1994
  • 6Sm姫tal,J.Chaoticfunctionswithzerotopologicalentropy,TransJournal of the American Mathematical Society,1986.
  • 7T. Y. Li,J. A. Yorke.Period three implies chaos. The American Mathematical Monthly . 1975
  • 8Schweizer,B.,Sklar,A. Probabilistic metric spaces . 1983
  • 9Xiong,J. C.A chaotic map with topological entropy 0. Acta Mathematica . 1986
  • 10Zhou,Z. L.Weakly almost periodic points and measure centre, Science in China, Ser. A . 1993

共引文献19

同被引文献8

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部