期刊文献+

基于μ+λ进化计算的传感器网络定位算法 被引量:2

Location Estimation in Wireless Sensor Networks Based on μ+λEvolutionary Algorithm
下载PDF
导出
摘要 基于接受信号强度(RSS)测距的定位方法是无线传感器网络中成本低而普遍使用的方法,但容易受到干扰降低定位精度.本文通过运用贝叶斯法则对RSS信号测距的概率模型进行详尽分析后,依据最大似然估计法则建立了更加合理的概率定位模型,然后针对模型不好求解的特点,结合传感器网络传输特点设计了基于μ+λ进化计算的求解算法.最后通过仿真实验证明了建立的概率定位模型和设计的基于μ+λ进化计算求解算法能降低环境干扰的影响,提高传感器节点的定位精度. One of the most commonly--used location methods in distance measurements is based on received signal strength (RSS) because this method is cheap for wireless sensor networks. However, its precision in location is easily affected by the interference of the circumstances. This paper employs the principle of the Bayesian chaining rule to thoroughly analyze the probability model of RSS--based distance measurements and set up a more reasonable probability location model based on the principle of maximum likelihood estimation. Considering the characteristics of the transmission of sensor networks, this paper designs an algorithm based on evolutionary algorithm since the model is difficult to work out. Through simulation experiment, the newly established probability location model and the algorithm based on evolutionary algorithm are finally proven to reduce the circumstantial interference and improve the location precision of the sensor nodes.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第2期9-12,17,共5页 Microelectronics & Computer
基金 国家自然科学基金项目(61063001 61262075) 广西自然科学基金项目(0832264) 广西高等学校重大科研项目(201201ZD012)
关键词 传感器网络 RSS定位 贝叶斯法则 最大似然估计 概率模型 μ+λ进化算法 wireless sensor networks RSS--based location principle of the Bayesian chaining rule maximum likelihood estimation probabilistic model μ+λ evolutionary algorithm
  • 相关文献

参考文献9

  • 1Wang J,Ghosh R K,Das S K. A survey on sensor localization[J].Journal of Control Theory and Applications,2010,(01):2-11.
  • 2Zanca G,Zorzi F,Zanella A. Experimental comparison of RSSI-based localization algorithms for indoor wireless sensor networks[A].New York,USA.ACM,2008.1-5.
  • 3Chia-Hung Chang,Wanjinn Liao. A probabilistic model for relative location estimation in wireless sensor networks[J].IEEE CL,2009,(12):893-895.
  • 4Chehri A,Forier P T,Geo P M. Location with wireless sensor networks using nonlinear optimization[J].International Journal of Computer Science and Network Security(IJCSNS),2008,(01):145-154.
  • 5Anushiya A Kannan,Guoqiang Mao,Branka Vucetic. Simulated annealing based wireless sensor network localization with flip ambiguity mitigation[J].JC,2006,(02):1022-1026.
  • 6赵仕俊,孙美玲,唐懿芳.基于遗传模拟退火算法的无线传感器网络定位算法[J].计算机应用与软件,2009,26(10):189-192. 被引量:38
  • 7Jang-Ping Sheu,Jian-Ming Li. A distributed location estimating algorithm for wireless sensor networks[A].Taichung:IEEE Press,2006.
  • 8朱剑,赵海,徐久强,李大舟.无线传感器网络中的定位模型[J].软件学报,2011,22(7):1612-1625. 被引量:22
  • 9Neal Patwari,Alfred O,Hero Ⅲ. matt perkins,neiyer correal,and robert[EB/OL].http://www.eecs.umich.edu/~hero/localize/,2006.

二级参考文献22

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 2孙佩刚,赵海,张文波,尹震宇,赵明.普适计算中定位服务的参考点布置及选择算法[J].电子学报,2006,34(8):1456-1463. 被引量:22
  • 3赵军,裴庆祺,徐展琦.无线传感器网络近似三角形内点测试定位算法[J].计算机工程,2007,33(5):109-111. 被引量:18
  • 4Aspnes J, Goldenberg D, Richard Yang Y. On the computational complexity of sensor network localization [ C ]//Proceedings of First International Workshop on Algorithmic Aspects of Wireless Sensor Networks, Turku, Finland, July 16,2004.
  • 5Mao G, Fidan B, et al. Wireless sensor network localization techniques [ J ]. Computer Networks, Elsevier,2007,51 (10) :2529 - 2553.
  • 6Wang S S, Shih K P, Chang C Y. Distributed direction-based localization in wireless sensor networks [ J ]. Computer Communications, Elsevier,2007:1424 - 1439.
  • 7Niculescu D,Nath B. Ad hoc positioning system (APS) [ J ]. In IEEE Globecom, San Antonio, USA,2001:2926 - 2931.
  • 8Niculescu D. Positioning in Ad Hoc Sensor Networks [ J ]. IEEE Network, 2004.
  • 9Niculescu D, Nath B. DV based positioning in ad hoc networks [ J ]. Telecommunication Systems, Kluwer Academic Publishers, 2003 : 267 - 280.
  • 10Huang Q, Selvakennedy S. A range-free localization algorithm for wireless sensor networks [ C ]//Proceedings of Vehicular Technology Conference, 2006.

共引文献58

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部