期刊文献+

挖掘用户标签的增强型社区网页聚类算法 被引量:4

Enhanced Social Web Clustering Algorithm of Mining Information
下载PDF
导出
摘要 网页的内容信息对于提高聚类质量来说并不完全够用,针对网络社区网页之间存在的天然链接关系,本文提出了一种挖掘用户标签的增强型社区网页聚类算法.本文采用多种距离度量方法,并挖掘网页链接关系,然后将网页的内容信息相似度和链接关系结合起来进行聚类.实验表明,提出的算法是有效的. With the development of Internet, textual content is not enough for web clustering sometimes. This paper proposes mining information for social web clustering algorithm. User information of pages is mined, including the link information, tag information. Experimental results show that the proposed social web clustering algorithm using mining information is effective.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第2期74-77,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(61074147)
关键词 社区网页 链接关系 网页相似度 social web page link web similarity
  • 相关文献

参考文献8

二级参考文献39

  • 1FLORESCU D,LEVY A,MENDELZON A.Database techniques for the world-wide Web:Survey[J].SIGMOD Record,1998,27(3):59-74.
  • 2CRESCENZI V,MECCA G,MERIALDO P.Wrapping-oriented classification of Web pages[C]// Proceedings of the 2002 ACM Symposium on Applied Computing.New York:ACM Press,2002:1108-1112.
  • 3REIS D C,GOLGHER P B,SILVA A S,et al.Automatic Web news extraction using tree edit distance[C]// Proceedings of the 13th International Conference on World Wide Web.New York:ACM Press,2004:502-511.
  • 4ZHAI Y,LIU B.Structured data extraction from the Web based on partial tree alignment[J].IEEE Transactions on Knowledge and Data Engineering,2006,18(12):1614-1628.
  • 5YANG W.Identifying syntactic differences between two programs[J].Software-Practice and Experience,1991,21(7):739-755.
  • 6Gupta S,Kaiser G,Neistadt D,et al.DOM-based Content Extraction of HTML Documents[C] //Proc.of the 12th Word Wide Web Conf..New York,USA:[s.n.] ,2003.
  • 7Pelleg D,Baras D.K-means with Large and Noisy Constraint Sets[C] //Proc.of the 18th European Conference on Machine Learning.Warsaw,Poland:[s.n.] ,2007.
  • 8Gruber T R. Toward principles for the design of ontologies used for knowledge sharing. International Journal Human Computer Studies, 1995, 43(5-6): 907-928.
  • 9Cimiano P. Ontology Learning and Population From Text: Algorithms, Evaluation and Applications. Heidelberg, Germany: Springer, 2006.
  • 10Sanderson M, Croft B. Deriving concept hierarchies from text//Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in InformationRetrieval(SIGIR'99). Berkeley, CA, USA, 1999: 206- 213.

共引文献32

同被引文献20

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部