摘要
将原对偶内点法与分枝定界法综合应用于无功优化过程中,提出一种并行分枝定界策略。该并行分枝定界策略采用异步通信策略和主从控制模式,并行平台为分布式内存存储下的分布式并行平台,各工作机并行产生决策树,并行对各自的子问题执行分枝定界操作。2个测试算例结果表明,该并行策略负荷平衡良好,能有效提高计算效率,获得良好的加速比。
The primal-dual interior point method and the branch & bound algorithm are integrated and applied in the reactive power optimization,and a parallel branch & bound strategy is proposed,which adopts asynchronous communication and master-slave control mode. In parallel,each machine of the parallel platform with distributed memory generates the decision tree and executes the branch & bound operation for its own process. Results of two tests show that,the parallel strategy balances the load well,improves the computational efficiency effectively and obtains an excellent speedup ratio.
出处
《电力自动化设备》
EI
CSCD
北大核心
2013年第2期52-56,共5页
Electric Power Automation Equipment
关键词
无功
优化
内点法
分枝定界
并行计算
模型
reactive power
optimization
interior point method
branch and bound
parallel computing
models