摘要
在本文中我们研究有限CN-群,即每个子群都c-正规的有限群.我们得到以下结果:群G是CN-群当且仅当G∈的每个子群都在G中正规.群G是CN-群当且仅当G可解且c-正规性是传递的.设p是一个奇素数,P是一个p-群,则P是一个CN-群当且仅当Φ(P)≤Z(P).我们也得到了一些CN-群的直积为CN-群的判别条件.
In this paper, we study the structure of finite CN-groups, which are groups with every subgroup c-normal. We obtain the following results: A group G is a CN-group if and only if each subgroup of G∈is normal in G. A group G is a CN-group if and only if the G is solvable and c-normality is transitive in G. Let P be a p-group where p is a odd prime. Then P is a CN-group if and only if Φ(P)≤Z(P). We also get some criteria of CN-group in terms of direct product of CN-groups.
出处
《中国科学:数学》
CSCD
北大核心
2013年第1期25-32,共8页
Scientia Sinica:Mathematica
基金
国家自然科学基金(批准号:11171353和11171292)资助项目
关键词
有限群
C-
正规
传递
finite group, c-normal, transitive